

# Background

Quality improvement and research necessitates accurate and reliable data. From 1993-2014, we utilized over 40 clinical staff to abstract STS data. It became more difficult to educate staff with the increasing number of fields collected and increasing case volumes (Graphs 1 and 2). Unfortunately, audits of our center's data in 2013 by our statewide quality collaborative revealed significant gaps in data quality.

We evaluated efforts to redesign our data collection system, including centralizing data abstraction and conducting monthly audits, to improve our center's data quality.







# Assessing the Impact of Centralizing Data **Abstraction at a Large Tertiary Care Center** Amy Geltz, MS, RN, Mary Barry, MS, RN **University of Michigan**

|                                                  |                   |                          | Μ                                             | etho                                                  | ds                                      |                      |                              |       |
|--------------------------------------------------|-------------------|--------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------|------------------------------|-------|
| In                                               | Im                | ng 2                     |                                               | contraliza                                            | ad tha a                                | lata                 |                              | т     |
|                                                  | Ju                |                          |                                               |                                                       |                                         | Jala                 |                              |       |
| ab                                               | stra              | actio                    | n proces                                      | s to one                                              | dedicat                                 | ed nur               | Se                           | ga    |
| ah                                               | stra              | actor                    | <sup>,</sup> with an                          | additiona                                             | al nurse                                | ahstr                | actor                        | fie   |
|                                                  |                   |                          |                                               |                                                       |                                         |                      |                              |       |
| hired April 2015. A quality manager was hired in |                   |                          |                                               |                                                       |                                         |                      |                              | d     |
| 20                                               | 14                | to ov                    | versee da                                     | ata qualit <sup>,</sup>                               | V                                       |                      |                              | Р     |
| 20                                               | 1 -               |                          |                                               | ala quant                                             | y -                                     |                      |                              | •     |
|                                                  |                   |                          |                                               |                                                       |                                         |                      |                              | Ze    |
| <b>C</b>                                         | raa               |                          | oontinuc                                      | d to obot                                             | root co                                 | laatiya              |                              | re    |
| Su                                               | ige               |                          | Continue                                      |                                                       | ract se                                 | iective              |                              |       |
| op                                               | era               | tive                     | fields.                                       |                                                       |                                         |                      |                              |       |
| •                                                |                   |                          |                                               |                                                       |                                         |                      |                              |       |
|                                                  |                   |                          |                                               |                                                       |                                         |                      |                              |       |
| Da                                               | ita :             | ahet                     | raction a                                     | uidelines                                             |                                         | reater               | l to                         | 1000/ |
| Da                                               |                   |                          |                                               |                                                       |                                         |                      |                              | 100%0 |
| sp                                               | ecif              | fy co                    | nsistent                                      | data sou                                              | rces fro                                | om the               |                              |       |
| مام                                              | otr               | onic                     | medical                                       | record (c                                             |                                         | aht ric              |                              | 80%   |
|                                                  | 50U               |                          | IIIcultai                                     |                                                       | .y. wei                                 | gin, na              | DN .                         |       |
| fac                                              | ctor              | s, pr                    | reoperativ                                    | ve medic                                              | ations).                                |                      |                              |       |
|                                                  |                   | •                        | •                                             |                                                       | ,<br>                                   |                      |                              | 60%   |
|                                                  |                   | Chart Nama               | V2.81                                         | Data Abstract                                         | ion Guidel                              |                      |                              |       |
| 2                                                | 2.8 SeqNo<br>335  | WeightKg                 | Weight                                        | Centricity Anesthesia Record                          | Ribbon                                  | Source #3            | Digitial Feed                | 40%   |
| -                                                | 330<br>355        | HeightCm<br>FHCAD        | Height<br>Family History CAD                  | Centricity Anesthesia Record<br>Service Admission H&P | Ribbon<br>Referring H&P                 |                      | Digitial Feed<br>Datamanager |       |
| -                                                | 360               | Diabetes                 | Diabetes                                      | Service Admission H&P                                 | Referring H&P                           | Lab values           | Datamanager                  |       |
|                                                  | 585               | CreatLst                 | Creatinine                                    | Results Review-Lab values                             | Referring H&P                           |                      | Datamanager                  | 200/  |
| _                                                | 375<br>380        | Dialysis<br>Hypertn      | Renal Failure - Dialysis<br>Hypertension      | Service Admission H&P<br>Service Admission H&P        | Referring H&P<br>Referring H&P          |                      | Datamanager<br>Datamanager   | 20%   |
| _                                                | 390               | InfEndTy                 | Infectious Endocarditis Type                  | Service Admission H&P                                 | Referring H&P                           | Results Review-Lab   | Datamanager                  |       |
|                                                  | 400               | TobaccoUse               | Tobacco Use                                   | Service Admission H&P                                 | Referring H&P                           | IP Nursing Adm       | Datamanager                  |       |
|                                                  | 405               | ChrLungD                 | Lung Disease                                  | Service Admission H&P                                 | Results Review-PFT                      | Referring H&P or     | Datamanager                  | 0%    |
| _                                                | 410               | ChrLungDType             |                                               | Results Review-PFT                                    | Service Admission H&P                   | Pulmonary Consult    | Datamanager                  |       |
|                                                  | 415               | PFT                      | PFT                                           | Results Review-PFT                                    | Media-OSH PFT                           |                      | Datamanager                  |       |
| _                                                | 420,425           | FEV1, DLCO<br>SlpApn     | FEV1, DLCO<br>Sleep Apnea                     | Results Review-PFT<br>Service Admission H&P           | Referring H&P                           |                      | Datamanager<br>Datamanager   |       |
| _                                                | 465               | Pneumonia                | Pneumonia                                     | Service Admission H&P                                 | Referring H&P                           |                      | Datamanager                  |       |
|                                                  | 470               | IV DrugAb                |                                               | Service Admission H&P                                 |                                         | Summary              | Datamanager                  |       |
| -                                                | 475<br>480        | Depression<br>Alcohol    | Depression<br>Alcohol Use                     | Service Admission H&P<br>Service Admission H&P        | Referring H&P<br>Referring H&P          | IP Nursing Adm       | Datamanager<br>Datamanager   |       |
|                                                  | 485               | LiverDis                 | Liver Disease                                 | Service Admission H&P                                 | Referring H&P                           | Summary              | Datamanager                  |       |
|                                                  | 490               | ImmSupp                  |                                               | Service Admission H&P                                 | Referring H&P                           | MAR                  | Datamanager                  |       |
| ŀ                                                | 495<br>500        | MediasRad<br>Cancer      | Mediastinal Radiation                         | Service Admission H&P<br>Service Admission H&P        | Referring H&P<br>Referring H&P          | Consults<br>Consults | Datamanager<br>Datamanager   |       |
| F                                                | 505               | PVD                      | Peripheral Arterial Disease                   | Service Admission H&P                                 | Referring H&P                           | DVU or CT            | Datamanager                  |       |
| E                                                | 525               | CVD                      | Cerebrovascular Disease                       | Service Admission H&P                                 | Referring H&P                           | Consults             | Datamanager                  |       |
| 5                                                | 530/540/56<br>545 | CVA/CVDTIA<br>CVDCarSten | CVA/TIA/carotid stent<br>CVD Carotid Stenosis | Service Admission H&P<br>Results Review-DVU           | Referring H&P<br>Media-Carotid dopplers |                      | Datamanager<br>Datamanager   |       |
| 5                                                | 565-640           |                          | Labs                                          | Results Review-Lab Values                             | Media -Labs                             |                      | Datamanager                  |       |
| 7                                                | 10-195<br>905     |                          | Cthor Provious Cardian                        | Service Admission H&P                                 | Referring H&P                           | Cain report (Media)  | Datamanager                  |       |

After the process change, a contracted auditor audited 100 charts (V2.81) to determine baseline discrepancies. Discrepant fields were discussed with local abstractors to achieve agreement on definitions.

In Fall 2015, the quality manager began monthly local audits of abstracted data, and providing feedback to the local abstractors.

# Results

The contracted auditor identified performance gaps in several pre-operative and procedure ields. After discussion and agreement on definitions, the Risk Factors, Cardiac Status and Procedure sections improved the percent of ero discrepancies by 35%, 24% and 20% espectively (Graph 3).



#### Our statewide quality collaborative audit in 2015 also improved, with only 3.2 deductions per case (Table 1).

| Table 1                                  |                              |
|------------------------------------------|------------------------------|
| Statewide Quality<br>Collaborative Audit | Avg # Deductions<br>per Case |
| 2008                                     | 23                           |
| 2013                                     | 24.7                         |
| 2015                                     | 3.2                          |

As a result, our STS national audit in 2016 revealed only 2.2 discrepancies per case.

The restructuring of our data abstraction process, including dedicated nurse abstractors, was associated with an improvement in data accuracy. Discrepancies continue to persist, albeit to a smaller degree.

Continued enhancement includes working with clinical staff to improve medical record documentation and the importance of capturing risk factors.

The support we receive from our statewide quality collaborative has been a key to improved data accuracy. This support includes quarterly meetings, audits and salary funding.

Efforts to maximize accuracy and reliability are challenged by the increased comprehensiveness of the STS Adult Cardiac Database.



# Conclusion



Sponsored by The Gail Bell Memorial Fund

# Two Model Comparison of the Predictive Ability of the 5 Meter Walk and Grip Strength Tests on Mortality and Morbidity after Cardiothoracic Surgery

# UPNIC LIFE CHANGING MEDICINE



# BACKGROUND

- > UPMC Is a quaternary referral academic institution with high co-morbid risk profiles.
- The Society of Thoracic Surgeons (STS) encourages collection of 5 meter walk patients undergoing tests on cardiothoracic surgery.
- > UPMC implemented a bilateral grip strength test as an additional measure of frailty.

## **OBJECTIVE**

- $\succ$  Our goal was to determine if there was an association between the above frailty measures and major postoperative outcomes.
- $\succ$  We hypothesized that slow gait speed and weak grip strength are predictive of increased mortality and morbidity.

#### Study Population

The cohort consisted of 1026 patients undergoing coronary artery bypass or valve replacement or repair surgery (excluding TAVR) between 2011-2017 who completed the 5 meter walk and/or grip strength tests.

| Table 1. Summary of Patient Characteristics |                  |  |  |  |  |  |
|---------------------------------------------|------------------|--|--|--|--|--|
| Patient Factors                             | Overall (N=1026) |  |  |  |  |  |
| Age, Mean (S.D.)                            | 66.9 (11.7)      |  |  |  |  |  |
| Male, Vol. (%)                              | 698 (68%)        |  |  |  |  |  |
| BMI, Mean (S.D.)                            | 30.1 (6.3)       |  |  |  |  |  |
| Comorbid conditions, Vol. (%)               |                  |  |  |  |  |  |
| Diabetes                                    | 467 (46%)        |  |  |  |  |  |
| Hypertension                                | 907 (88%)        |  |  |  |  |  |
| Dyslipidemia                                | 882 (86%)        |  |  |  |  |  |
| Prior MI                                    | 537 (52%)        |  |  |  |  |  |
| Prior CHF, N=501*                           | 147 (29%)        |  |  |  |  |  |
| EF<40%                                      | 176 (17%)        |  |  |  |  |  |
| LM Native Stenosis                          | 224 (22%)        |  |  |  |  |  |
| CVA, N=608*                                 | 86 (14%)         |  |  |  |  |  |
| Previous cardiac surgery                    | 134 (13%)        |  |  |  |  |  |
| Chronic lung disease                        | 280 (27%)        |  |  |  |  |  |
| Depression, N=501*                          | 110 (22%)        |  |  |  |  |  |

#### 5M Walk & Grip Strength Tests

Slow gait speed was indicated by taking >6 seconds to walk 5 meters, while grip strength was considered to be weak if result was <25% of the patient's body weight.

#### Statistical Analysis

Multivariable logistic regression models were employed as statistical approaches to test for associations between gait speed, grip strength and mortality and morbidity outcomes.

Darlene Anderson, RN, Andrew Bilderback, MS, Stefanie Altieri Dunn, PhD,

Douglas McGill, MS, Karan Moore, RN, Aimee Francart, CP

**University of Pittsburgh Medical Center (UPMC)** 

## **METHODS**



#### Gait Speed

**Table 2**. Incremental Value of Gait Speed to Core Risk Factors on Jutcomes of Mortality and Maior Morhidity

|        |                          |                   |         |                           |                | Outcomes of wortancy and wajor worblatty |                             |         |                          |         |
|--------|--------------------------|-------------------|---------|---------------------------|----------------|------------------------------------------|-----------------------------|---------|--------------------------|---------|
|        |                          | Model without Gai | t Speed | Model with Gait S         | Speed          |                                          | Model without Grip Strength |         | Model with Grip Strength |         |
| 5      | Variable                 | OR (95% CI)       | P-Value | OR (95% CI)               | <b>P-Value</b> | Variable                                 | OR (95% CI)                 | P-Value | OR (95% CI)              | P-Value |
| 5      | Age ≥ 80 yrs             | 2.10 (1.31,3.36)  | 0.002   | 1.95 (1.07 <i>,</i> 2.36) | 0.032          | Age ≥ 80 yrs                             | 1.79 (.89,3.59)             | 0.101   | 1.80 (0.90, 3.63)        | 0.097   |
|        | Male                     | .80 (.55,1.17)    | 0.252   | .90 (.60,1.33)            | 0.586          | Male                                     | 0.74 (0.45, 1.22)           | 0.235   | 0.86 (.49,1.54)          | 0.617   |
|        | Previous cardiac surgery | 1.48 (.90,2.42)   | 0.123   | 1.45 (.88,2.38)           | 0.143          | Previous cardiac surgery                 | 1.16 (.55,2.47)             | 0.698   | 1.18 (0.55,2.51)         | 0.671   |
|        | LVEF < 40%               | 1.71 (1.11,2.64)  | 0.016   | 1.66 (1.07, 2.57)         | 0.023          | LVEF < 40%                               | 1.93 (1.12, 3.31)           | 0.017   | 1.91 (1.11,3.29)         | 0.019   |
| )<br>{ | Left main stenosis ≥ 50  | .71 (.44,1.13)    | 0.148   | .68 (.42,1.09)            | 0.109          | Left main stenosis ≥ 50                  | 0.81 (0.45,1.47)            | 0.495   | 0.79 (.435,1.43)         | 0.439   |
|        | Urgent vs. Elective      | 1.67 (1.09,2.55)  | 0.018   | 1.50 (.97, 2.32)          | 0.065          | Urgent vs. Elective                      | 1.74 (0.90,3.34)            | 0.097   | 1.76 (0.91,3.38)         | 0.092   |
|        | Nonisolated CABG         | 1.88 (1.23,2.87)  | 0.004   | 1.81 (1.18,2.78)          | 0.006          | Nonisolated CABG                         | 1.68 (0.94,3.03)            | 0.082   | 1.67 (0.93,3.00)         | 0.089   |
|        | Gait speed≥6s            | -                 | -       | 1.59 (1.07,2.36)          | 0.021          | Grip<25% body weight                     | -                           | -       | 1.35 (.76,2.38)          | 0.307   |
|        |                          |                   |         |                           |                |                                          |                             |         |                          |         |

Gait speed was an independent predictor of mortality and major morbidity after adjusting for 7 core risk factors identified in the literature.

<sup>a</sup>Core risk factors were previously identified in Afilalo et al. (2010) Journal of the American College of Cardiology, 56(20):1668-76. Key: OR=Odds Ratio, CI=Confidence Interval, LVEF=left ventricular ejection fraction

#### Table 3 . Incremental Value of Gait Speed to STS Risk on **Outcomes of Mortality and Major Morbidity**

| $\mathbf{S}$ |                                                      | Model without Gait                  | Speed            | Model with Gait S                  | peed         |                                                 | Model without Grip                  | Strength           | Model with Grip St                  | rengtl       |
|--------------|------------------------------------------------------|-------------------------------------|------------------|------------------------------------|--------------|-------------------------------------------------|-------------------------------------|--------------------|-------------------------------------|--------------|
|              | Variable                                             | OR (95% CI)                         | P-Value          | OR (95% CI)                        | P-Value      | Variable                                        | OR (95% CI)                         | <b>P-Value</b>     | OR (95% CI)                         | P-Val        |
|              | STS Risk Score                                       | 79.67 (26.63,239.29)                | <.001            | 63.19 (19.60,204.77)               | <.001        | STS Risk Score                                  | 83.96 (19.46,362.27)                | <.001              | 79.57 (17.98,352.1)7                | <.00         |
|              | Gait speed ≥6s                                       | -                                   | -                | 1.25 (.83,1.86)                    | 0.283        | Grip<25% body weight                            | -                                   | -                  | 1.11 (.67,1.84)                     | 0.69         |
| -<br>-<br>   | Gait speed weight<br>mortality and<br>STS risk score | was not an i<br>major morbidi<br>Ə. | ndepe<br>ty afte | ndent predicto<br>er adjusting for | or of<br>the | Grip strength<br>mortality and<br>STS risk scor | n was not an<br>major morbid<br>re. | indepo<br>ity afte | endent predicter<br>er adjusting fo | or c<br>r th |

# RESULTS

| Types     |                   |          |           |
|-----------|-------------------|----------|-----------|
|           |                   |          |           |
|           |                   |          |           |
|           |                   |          |           |
|           |                   |          |           |
|           |                   |          |           |
|           |                   |          | _         |
|           | N /1) /           |          |           |
| AVR + CAR | IVIV<br>Replace + | AVR + MV | MV Repair |
|           | CAB               | Replace  | + CAB     |
| 12        | 1                 | 1        | 5         |
| 1 /       | 0                 | 25       | 40        |

- $\succ$  More than half of the patients in this cohort had undergone isolated coronary artery bypass.
- > The remainder of patients received value replacement/repair or a combination of procedures.

Key: CAB=coronary artery bypass, AVR=aortic valve replacement, MV=mitral valve

#### Grip Strength

**Table 4**. Incremental Value of Grip Strength to Core Risk Factors on Outcomes of Mortality and Major Morbidity

Grip strength was not an independent predictor of mortality and major morbidity after adjusting for 7 core risk factors identified in the literature.

#### Table 5. Incremental Value of Grip Strength to STS Risk on **Outcomes of Mortality and Major Morbidity**

# SUMMARY

- > Slow gait speed was a predictor of increased mortality and morbidity when added to a previously published model using 7 core risk factors.
- $\succ$  However, it did not add incremental value to a model with the STS risk score.
- Weak grip strength added no value as a predictor of mortality or morbidity in either model.

## CONCLUSION

The 5 meter walk and grip strength tests added no predictive power to the STS risk model. This suggests that the STS risk model alone continues to be a robust predictor of mortality and morbidity following cardiothoracic surgery.

#### Acknowledgements

Thomas G. Gleason, M.D. Co-Director Heart and Vascular Institute & Chief, Division of Cardiac Surgery

Jonathan Ledyard, Director of UPMC Cardiopulmonary Rehabilitation

No Financial or Regulatory Disclosures

# An Interdisciplinary Approach to 100% Medication Compliance

## <u>Abstract</u>

Background

Specific evidence-base medications in patients undergoing coronary artery bypass grafting (CABG) procedures are measured and reported by The Society of Thoracic Surgeons (STS) Adult Cardiac database. An STS medication compliance review at a tertiary academic medical center noted performance of only 93.85% in Isolated CABG procedures. A strategy was developed to increase compliance to 100%.

#### Methods

Interventions began in stages beginning in October 2016 with concurrent preoperative reviews by the data manager. The data manager would notify the appropriate clinician based upon process failure. If a medication was ordered but not given, the bedside RN was contacted. If no medication was ordered the appropriate provider was notified depending on patient's location. Mini root cause analyses were conducted with a midlevel provider on any near miss case. In December 2016, a checklist of evidence-based medications was added to the discharge summary. Order set revisions, including appropriate medications, were completed in March 2017.

Raw rates were reviewed and compared for 12 rolling months prior to October 1, 2016 and 6 months post. Medication failures were defined as any individual undergoing a CABG who did not receive all of the required perioperative medications (preoperative beta blockade, discharge antiplatelet, anti-lipid and beta blockade).

#### Results

Pre-intervention review noted 93.85% (12/195) compliance. Postintervention noted 100% (0/126) compliance. Utilizing Fisher's exact test, a two-tailed P value equal to 0.0042 was noted.

#### Conclusions

An Interdisciplinary approach with concurrent review and technological interventions achieved 100% adherence to evidence-base medication administration.



## Stephanie Kish, RN, BSN, CPHQ; Michael Kuzman, MPA, PA-C; Bonnie Sutton RN, BSN, MHR; Kimberly Chipps RN, BSN

## **Introduction**

- Evidence-based medication administration has been shown to decrease morbidity and mortality among patients undergoing Isolated CABG procedures.
- Multiple disciplines are responsible for appropriate medication administration.

## Aims

- Increase medication administration compliance. Institute process measures to ensure appropriate medications
- received.
- Increase reporting and communication of any missed opportunities or near misses.

## Methods

- Chart Review
  - Morning of surgery data manager record review.
    - RN contacted for any medication not documented including home medications taken
    - day prior to procedure without time notation. Anesthesia notified if no beta-blocker received
    - prior to arriving in the OR.
- Order sets
  - Order sets adjusted to include preoperative beta-blocker as a scheduled medication. Previously appeared on the PRN medication list.
- **Discharge Checklist** 
  - During this hospitalization did the patient have an AMI, PCI/PTCA, STENT or Isolated CABG? Yes and is being discharged on the following regimen:
    - ASA: Yes/No/Contraindicated (reason)
    - Beta Blocker: Yes/No/Contraindicated (reason)
    - ACE1/ARB: Yes, No, No EF > = 40%,
    - Contraindicated (reason)
    - Statin: Yes, No, Contraindicated (reason)
    - Antiplatelet (Plavix, Brilinta, Effient): Yes, No, Contraindicated (reason)
    - Spironolactone Indicated (Heart Failure): Yes, No (reason)

- Mini-Route Cause Analysis
- Measurement of results



## Considerations

Time and resources are two considerations when attempting concurrent intervention. Data managers must have the time to review and intervene prior to the procedure or discharge. Support by information technology for electronic medical health record interventions need to be available. An advanced practice professional champion is also important in order for route cause analysis to be meaningful and to assist with implementation of interventions.

- Medication compliance was achieved.
- were received.

**Disclosure:** Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.

Data manager intervention took place. Conflicting documentation. Fisher's exact test, two-tailed P value obtained.

## <u>Results</u>

## Conclusion

Process measures were instituted to ensure appropriate medications

Communication and reporting of near misses increased.

Correspondence: Stephanie Kish, RN, BSN, CPHQ kishs@wvumedicine.org 304-598-4000 ext. 77898



# Unlocking the Mystery of 'Other' Readmissions Is v2.9 the Key?

#### **OBJECTIVE**

An analysis of STS data revealed that the leading cause of hospital readmission following coronary artery bypass grafting in Michigan was 'Other-Related'. With a statewide quality initiative to reduce readmissions after CABG, we sought to understand the specific reasons associated with 'Other-Related' and 'Other-NonRelated' readmissions.



#### **METHODS**

1,089 CABG readmissions from January 1<sup>st</sup>, 2015 - December 31<sup>st</sup>, 2016 were analyzed.

34% (378/1,089) were coded as either 'Other-Related' or 'Other-NonRelated' in our state database.

Data Managers from all 33 cardiac surgery programs in Michigan provided specific reasons for the 378 'Other' readmissions.

Specific reasons were recategorized using new v2.9 readmission reason choices.



Melissa Clark RN, Patty Theurer RN, Jaelene Williams RN, David Grix CCP, Richard L. Prager MD For the MSTCVS Cardiac Surgery Quality Collaborative

#### RESULTS

31.3% of CABG readmissions in Michigan are categorized as 'Other', making it difficult to focus quality improvement efforts.

68.3% (231/338) of 'Other' readmissions in Michigan could be specifically categorized with the addition of new v2.9 readmission reasons.

The largest percentage of 'Other' readmissions were due to sternal wound complications.

Sharing this information with cardiac surgery teams offers insight into areas of focus for reducing hospital readmissions following cardiac surgery.

This analysis identified areas of opportunities for data manager education and improved data abstraction.

Support for Michigan Society of Thoracic and Cardiovascular Surgeons Quality Collaborative is provided by Blue Cross and Blue Shield of Michigan and Blue Care Network as part of the BCBSM Value Partnerships program. Although Blue Cross Blue Shield of Michigan and MSTCSV Quality Collaborative work collaboratively, the opinions, beliefs and viewpoints expressed by the author do not necessarily reflect the opinions, beliefs and viewpoints of BCBSM or any of its employees.

> For more information about the MSTCVS Quality Collaborative and its quality initiatives, please contact the MSTCVS Coordinating Center: 734-998-5918

The authors of this poster have nothing to disclose





Nonprofit corporations and independent licensees of the Blue Cross and Blue Shield Association

#### CONCLUSIONS

# Isolated CABG Discharge Documentation Improvement

Author(s): Jen Tung, RN; Michael Argenziano, MD; Lisa Gengo, PA-C; Debra Hollenberg, RN; Paul Kurlansky, MD; Elaine Hui-Martinez, RN; Irene Prudente, RN; Cindy Smith, RN; Samantha Nemeth, MPH NewYork-Presbyterian Hospital / Columbia University Medical Center

## **Background:**

 A key performance measure of the STS CABG Composite Quality Rating involves the adminis specific medications endorsed by the National Forum. The scoring of the CABG Medications impacts the overall composite score for CABG used in national analyses and benchmarking b well as voluntary public reporting by individual participants. Historically, NewYork-Presbyteriar Columbia has earned one star for this domain, composite score of two stars.

## Method:

- A multidisciplinary team of cardiac surgeons, a quality specialists, software engineers, and ser hospital management worked together to ident potential solutions.
- Definitions for the data fields were identified ar reviewed with the team. We identified the Discharge Summary as the best location for creating a structured change.
- The Discharge Summary note was redesigned and implemented. In-services were held with clinical providers to educate them on the changes.

| S<br>stration of<br>Quality<br>domain<br>S, which is<br>by STS as | Outcomes<br>Isolated CABG                                                                                                                                                                                |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | Preoperative Beta Blockade Therapy:<br>Isolated CABG patients who received Beta<br>within 24hrs preceding surgery. (NQF*)                                                                                |
| n/<br>, with a                                                    | Beta Blockers @ Discharge: Percent of<br>patients who were discharged on Beta Blo                                                                                                                        |
|                                                                   | Anti-lipid Treatment @ Discharge: Per-<br>CABG patients who were discharged on a                                                                                                                         |
|                                                                   | Anti-platelet @ Discharge: Percent of la<br>patients who were discharged on ASA and<br>inhibitor. (NQF*)                                                                                                 |
|                                                                   |                                                                                                                                                                                                          |
| analysts,<br>nior<br>tify                                         | <ul> <li>Results:</li> <li>Providers are reminded of the disc<br/>exact reasons for contraindications</li> <li>Our 2016 Harvest 4 report for Isola</li> <li>Our composite is now three stars.</li> </ul> |
| nd                                                                |                                                                                                                                                                                                          |

## **Conclusion/Next Steps:**

- documentation.

|                  | STS<br>Benchmark<br>2016 | Q3 2015 | Q4 2015         | Q1 2016 | Q2 2016 | Q3 2016      | Q4 2016 |
|------------------|--------------------------|---------|-----------------|---------|---------|--------------|---------|
|                  |                          |         |                 |         |         |              |         |
|                  |                          | 86      | 99              | 119     | 117     | 109          | 106     |
| Percent of       | 95.2%                    | 78.6%   | 85.6%           | 88.0%   | 91.4%   | <b>98.9%</b> | 86.5%   |
| DIOCKETS         | JJ.2 /0                  | 66      | 77              | 95      | 96      | 91           | 83      |
| Isolated CABG    | 02 6%                    | 96.3%   | 98.9%           | 100.0%  | 100.0%  | 100.0%       | 97.1%   |
| ckers. (NQF)     | 50.076                   | 78      | 93              | 113     | 111     | 104          | 102     |
| cent of Isolated | 07 79/                   | 91.5%   | 98.9%           | 100.0%  | 100.0%  | 100.0%       | 99.0%   |
| statin. (NQF)    | 51.170                   | 75      | 91              | 113     | 111     | 105          | 104     |
| solated CABG     | 00 20/                   | 97.6%   | 100.0%          | 100.0%  | 100.0%  | 99.1%        | 98.1%   |
|                  | 30.376                   | 81      | <mark>95</mark> | 117     | 116     | 106          | 103     |

charge medication requirements upon entering the structured note and are now able to document

ated CABGs awarded us two stars for Medications.

• A multi-disciplinary approach that elicits the cooperation and engagement of multiple team members working together to identify a solution is an effective tool for Quality Improvement. Having clear communication and a template with hard stops not only helps with data abstraction, but acts as a reminder for documentation requirements.

• Data managers will now focus on consistent reinforcement of documentation needs to ensure that providers continue to adhere to quality charting. Furthermore, quarterly efforts will be made to educate new staff on the importance of clinically accurate medication





#### Five-year Review of Post Left Ventricular Assist Device Outcomes in Relation to Body Mass Index Sylvia M. Laudun, DNP, MBA, RN, CPHQ, P. Eugene Parrino, MD, Michael J. Bates, MD, Sapna V. Desai, MD, Aditya Bansal, MD

#### Introduction

- Obesity is discussed using the patient's current body mass index (BMI) during screening for bridge to transplant (BTT) and destination therapy (DT) for left ventricular assist device (LVAD) implantation
- Medical community assumes patients with BMIs >35 are at an increased risk for complications post device implantation

#### **Project Purpose:**

To analyze the relationship of pre-operative BMI on postoperative outcomes during 12-month follow-up at a large transplant center

#### **Methods**

#### **Design:** Retrospective review

Sample: N=182

Included: Primary implantation of LVAD between October 2010 to September 2016 with a 12-month follow-up review **Excluded:** Pediatric patients; LVAD exchange patients Data Source: INTERMACS, Society of Thoracic Surgeons Adult Cardiac database, and implanting institution's electronic medical record

#### **Data Collection:**

•BMI, demographics, post-operative & post-discharge outcomes

 Patients were grouped according to their pre-operative BMI classification defined by the World Health Organization:

- ✓ underweight (<18.5)
- $\checkmark$  normal weight (18.5-24.9)
- ✓ overweight (25.0-29.9)
- ✓ obesity-class 1 (30.0-34.9)
- ✓ obesity-class 2 (35.0-39.9)
- ✓ severe obesity-class 3 (≥40.0)

Statistical analyses: Chi-square and Fisher's exact tested for relationship between BMI and categorical post-operative outcomes (neurological events, device malfunction, driveline exit site infection); Level of significance  $\alpha$ =0.05, 2-tailed; Kaplan Meier used for survival rate analysis.

#### **Results**

- Highest percentage of neurological events, 22% was in normal weight patients (n=51) 1.
- Highest percentage of device malfunction, 40% was in obese-class 2 patients (n=15) 2.
- 3. All classes had a rate of 12% or less for driveline exit site infections, except obese-class 3 (n=2) with 50% class 3 were 93% and 100% respectively
- 4. 1-year survival for normal weight patients was 71%, while obese-class 2 and obese-5. All BMI classifications demonstrated a median weight gain range of 5.6%-12.1% at 12-
- month follow-up
- 22% of normal weight patients (n=51) went on to heart transplantation, while only 7% 6. from obese-class 2, and 0% from obese-class 3

The percentage of postoperative outcomes did not differ by BMI group (p>0.05)

#### **Demographic Data:**

|                            |             |                  |            |                  | -               |
|----------------------------|-------------|------------------|------------|------------------|-----------------|
| Parameter                  | Underweight | Normal<br>Weight | Overweight | Obese Class<br>I | Obese Clas<br>2 |
| n                          | 2           | 51               | 67         | 45               | 15              |
| BMI, median                | 17.2        | 22.7             | 27.6       | 32.2             | 36.5            |
| Age, yr median             | 50.5        | 55.0             | 57.0       | 54.0             | 43.0            |
| Male (%)                   | 1 (50%)     | 39 (76%)         | 52 (78%)   | 27 (60%)         | 9 (60%)         |
| Race (%)                   |             |                  |            |                  |                 |
| White                      | 1 (50%)     | 32 (63%)         | 34 (51%)   | 24 (53%)         | 8 (53%)         |
| Black                      | 1 (50%)     | 18 (35%)         | 33 (49%)   | 21 (47%)         | 7 (47%)         |
| Other                      | 0 (0%)      | 1 (2%)           | 0 (0%)     | 0 (0%)           | 0 (0%)          |
| Device Type (%)            |             |                  |            |                  |                 |
| HeartMate II               | 1 (50%)     | 41 (80%)         | 61 (91%)   | 41 (91%)         | 11 (73%)        |
| Heartware                  | 1 (50%)     | 9 (18%)          | 6 (9%)     | 3 (7%)           | 4 (27%)         |
| Syncardia                  | 0 (0%)      | 1 (2%)           | 0 (0%)     | 1 (2%)           | 0 (0%)          |
| Initial VAD Indication (%) |             |                  |            |                  |                 |
| ВТТ                        | 0 (0%)      | 22 (43%)         | 35 (52%)   | 24 (53%)         | 8 (53%)         |
| DT                         | 2 (100%)    | 29 (57%)         | 32 (48%)   | 21 (47%)         | 7 (47%)         |
| Diabetes                   | 0 (0%)      | 18 (35%)         | 27 (40%)   | 25 (56%)         | 11 (73%)        |
| Pre-op A1C% (median)       | 6.3         | 6.0              | 6.0        | 6.2              | 6.5             |
| Pre-op Creatinine (mg/DL)  | 1.5         | 1.2              | 1.2        | 1.2              | 1.4             |

#### **Inpatient Outcomes:**

| Parameter                                                                                                                                                  | Underweight | Normal Weight | Overweight | Obese Class I | Obese Class 2 | Obese Class 3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------|---------------|---------------|---------------|
| n                                                                                                                                                          | 2           | 51            | 67         | 45            | 15            | 2             |
| Initial Intubation Days,<br>median                                                                                                                         | 6.3         | 2.8           | 1.9        | 3             | 1.3           | 6.7           |
| Total ICU Days, median                                                                                                                                     | 26          | 11            | 9          | 9             | 6             | 16            |
| Total LOS                                                                                                                                                  | 30          | 26            | 22         | 21            | 17            | 37            |
| Renal Failure*                                                                                                                                             | 1 (50%)     | 13 (25%)      | 11 (16%)   | 8 (18%)       | 2 (15%)       | 1 (50%)       |
| <b>Re-Operation for Bleeding</b>                                                                                                                           | 1(50%)      | 13 (25%)      | 15 (22%)   | 8 (18%)       | 1 (7%)        | 0 (0%)        |
| Timing: Acute**                                                                                                                                            | 1(50%)      | 6 (12%)       | 6 (9%)     | 3 (7%)        | 0 (0%)        | 0 (0%)        |
| :U = Intensive Care Unit; LOS = Length of Stay; *Renal failure requiring dialysis or CRRT as inpatient; **Re-Operation for bleeding within 24 hours of the |             |               |            |               |               |               |

end of the case

**Ochsner Medical Center, New Orleans, LA** 



#### **Results (continued)**









#### **Conclusions**

- No significant relationship between pre-operative BMI and postoperative outcomes (p>0.05) during 12-month follow-up was identified in this cohort
- Common myth that obese LVAD patients demonstrate worse outcomes was not validated from our experience
- **Limitations:** Retrospective review from single center; less than 1% of cohort in underweight and severe obesity-class 3 groups
- **Recommendations**: Multi-center studies are needed to follow longitudinal outcomes in the LVAD population. Future research in nutritional support, cardiac rehab or exercise programs, or bariatric surgery for post implantation.

#### **Disclosures**

A. Bansal: Consultant/Advisory Board, Abbott, ABIOMED, Tandem Life; Speakers Bureau/Honoraria, Abbott, Tandem Life

S. V. Desai: Consultant/Advisory Board, Abbott; Speakers Bureau/Honoraria, Abbott

| Obese<br>Class 3 | Total     |  |  |  |  |
|------------------|-----------|--|--|--|--|
| 2                | 182       |  |  |  |  |
| 38.5             | 28.0      |  |  |  |  |
| 38.5             | 55        |  |  |  |  |
| 0 (0%)           | 128 (70%) |  |  |  |  |
|                  |           |  |  |  |  |
| 0 (0%)           | 99 (54%)  |  |  |  |  |
| 2 (100%)         | 82 (45%)  |  |  |  |  |
| 0 (0%)           | 1 (1%)    |  |  |  |  |
|                  |           |  |  |  |  |
| 2 (100%)         | 157 (86%) |  |  |  |  |
| 0 (0%)           | 23 (13%)  |  |  |  |  |
| 0 (0%)           | 2 (1%)    |  |  |  |  |
|                  |           |  |  |  |  |
| 1 (50%)          | 90 (49%)  |  |  |  |  |
| 1 (50%)          | 92 (51%)  |  |  |  |  |
| 2 (100%)         | 83 (46%)  |  |  |  |  |
| 7.2              | 6.5       |  |  |  |  |
| 1.3              | 1.2       |  |  |  |  |
|                  |           |  |  |  |  |

# LIVING IN THE MOMENT: REAL-TIME DATA ABSTRACTION Cindy Spears, RN; Lisa Berryman, RN, BSN OSF HealthCare Saint Francis Medical Center Peoria, Illinois

# BACKGROUND

- Standard Retrospective Data Abstraction >Outdated data (6 month lag)
- Decreased ability to identify opportunities to make positive change in a timely manner

# METHODS

- **Concurrent Data Abstraction**
- OR schedule reviewed daily to identify eligible cases
- Post-op Day 1
  - > Episode opened in third party vendor
  - > Patient entry created in day planner for visual cues on progress
  - Data entered to date using temporary note fields as a reference for future abstraction
  - > Data abstraction clarifications sent to physician for review
- Post-op Day 2 and beyond
  - > Episodes completed for discharges in the past week
  - > Data abstraction clarifications sent to physician for review
- Day planner updated on discharge







# RESULTS

- Documentation opportunities identified real-time
- documented
- use
- >Bypass graft location for abstraction

# CONCLUSION

Data is readily available to the team. Monthly workgroup meetings review current data while the cases are still fresh to surgeon and staff involved in the care of the patient. The very success of our workgroup is based on the concurrent abstraction and living in the moment!

# HEALTHCARE

Pre-op Beta Blocker contraindications not

Reasons for no Internal Mammary Artery

# LIVING IN THE MOMENT TECHNIQUES

key!

Day Planner Purpose

>OR Schedule has been reviewed

> Episode has been created... and completed

Patient Name if Risk model Patient Name if "other" case Abstraction has been started Abstraction completed

Temporary Note Field in Third Party Vendor Tool

>Any outstanding clarifications

Date and time patient care notes last reviewed

thru 9/11 0638 need perfusion log need OP note

## FINANCIAL AND REGULATORY DISCLOSURE: NONE

## **Knowledge of concurrent abstraction process is**

# EIGH

## A Multidimensional Approach to Improving the STS CABG Medication Star Rating Chloe Davidson Villavaso, MN, APRN, ACNS-BC **East Jefferson General Hospital**

#### Background

The STS coronary artery bypass graft surgery (CABG) star rating includes a medication quality domain which addresses four National Quality Forum (NQF)-endorsed medications. Failure to prescribe any of the NQF-endorsed medications can reflect negatively on the CABG star rating. After receiving one out of three stars, one community hospital implemented a multidimensional performance improvement project.

#### Methods

The aim of the project was to decrease the number of NQF-endorsed medication prescription failures. Two hundred seven patients undergoing elective or urgent isolated CABGs from May 2015 to **December 2016 were included. The** process improvement team included cardiothoracic surgeons, cardiologists, hospitalists, telemetry nurses, anesthesia, clinical nurse specialists, and same day surgery, telemetry, and presurgery evaluation nurses. All members of the team were educated on the 2015 Harvest 1 medication star rating and their role in decreasing prescription failures. The presurgery evaluation nurse reviewed the home medication orders and notified the surgeon of any patient not on a beta blocker.

#### Methods

The same day surgery nurses informed anesthesia of patients that did not take a beta blocker the morning of surgery. As part of the time-out, the surgical team checked for documentation of a beta blocker taken within 24 hours. The clinical nurse specialist performed daily medication reviews, including the NQF-endorsed medications. A nursing discharge medication checklist (Fig. 1) was completed by the discharging telemetry nurse while a discharge medication alert (Fig. 2) was built within the electronic medical record. This alert fired if any of the three NQF-endorsed medications were not ordered at discharge. If the discharging clinician chose to ignore the alert, an email (Fig. 3) was sent to the cardiac program clinical nurse specialists and the telemetry supervisor, quality nurse, and charge nurse to initiate follow-up.

CABG Discharge Medication Checklist

Do not discharge CABG patient unless all three classes of medication are ordered OR a contraindication is documented in COMPAS.

| Document Contraindication per MD under Orders in COMPAS                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                         |
| Search "Reason Beta Blocker not Prescribed at Discharge"                                                                                                                                                                                                                                                                |
| Choose appropriate contraindication in order details drop-down menu:          Allergy         Bradycardia         Hypotension(SBP<90)         2 <sup>nd</sup> or 3 <sup>rd</sup> Degree Heart Block w/o Pacemaker         COPD         Recent IV positive Inotrope treatment         Other-Enter "Other reason details" |
| Search "Reason Antiplatelet/Aspirin not Prescribed at Discharge"         Choose appropriate contraindication in order details drop-down menu:         Allergy         Other-Enter "Other reason details"                                                                                                                |
|                                                                                                                                                                                                                                                                                                                         |
| Search "Reason Statin not Prescribed at Discharge"                                                                                                                                                                                                                                                                      |
| Choose appropriate contraindication in order details drop-down menu:                                                                                                                                                                                                                                                    |
| Allergy                                                                                                                                                                                                                                                                                                                 |
| Liver Disease                                                                                                                                                                                                                                                                                                           |
| Other-Enter "Other reason details"                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                         |

Figure 1





| Cerner ADD REASON NOT PRESCRIBED ORDER                                                                                                           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| The record shows that E. J. PATIENT does not have Reason Statin not Prescr<br>Discharge order.                                                   | ibed at |
| ACTION REQUIRED:                                                                                                                                 |         |
| -Select the Reason Statin not Prescribed Order below and ignore, then OK                                                                         |         |
| OR                                                                                                                                               |         |
| -Select Cancel and OK to navigate the Depart Medication Reconciliation and e<br>continue the current home medication or enter a new prescription | ither   |
| lert Action:                                                                                                                                     |         |
| Cancel                                                                                                                                           |         |
| □ Ignore                                                                                                                                         |         |
| dd Order for:                                                                                                                                    |         |
| Reason Statin Not Prescribed at Discharge                                                                                                        |         |
|                                                                                                                                                  |         |

From: Discern Expert@ejgh.org[mailto:Discern Expert@ejgh.org] Sent: Thursday, September 14, 2017 8:16 AM To: Villavaso, Chloe D

Subject: CAB Alert

The following patient had a CABG during this encounter and a discharge order was placed, ignoring the alert for Beta Blockers. Please follow-up with person placing discharge order.

Patient: E. Jones. MRN: 012340801. Room: 0272. Date/Time of Discharge Order: September 14, 2017 08:15:43 CDT. Signer: John Morton, MD

#### Figure 3

#### Results

The 2015 Harvest 1 CABG medication one star rating was based on 82 patients with 22 failures to prescribe the NQF-endorsed medications. Following full implementation of the project, the 2017 Harvest 1 medication three star rating was based on **109 patients with 3 NQF-endorsed** medication prescription failures.

A multidimensional approach to decreasing medication prescription failures is an effective way to improve care. This form of process improvement can be used in various settings to improve quality and patient outcomes.

NQF: Home. (n.d.) Retrieved September 18, 2017, from http://www.qualityforum.org/Home.aspx





#### Conclusion

#### Reference

\* The author has no financial or regulatory disclosures.



# Are Bounce-backs To The Cardiac ICU And Hospital Readmissions In Cardiac Surgery Preventable?

M Sussman MD<sup>1</sup>, D Alejo BA<sup>1</sup>, S Owens ACNP-BC PhD<sup>1,2</sup>, D Law ACNP-BC MSN<sup>2</sup>, S Smith BA<sup>1</sup>, T Madeira MS RN<sup>2</sup>, R Makam, MD<sup>1</sup>, G Whitman MD<sup>1</sup> **Institution(s):** Johns Hopkins University School of Medicine<sup>1</sup>; Johns Hopkins Hospital<sup>2</sup>

#### INTRODUCTION

Bounce-backs to the ICU and readmissions to the hospital represent significant morbidity for patients. Furthermore, they are expensive and put hospitals at financial risk, especially in the current reimbursement model in the state of the Maryland. The Johns Hopkins (JH) cardiac surgery team developed processes to elucidate the reasons for these events and determine whether they were preventable.

#### **METHODS**

We evaluated open heart surgery patients (excluding transplant and VAD) from 1/1/17 to 9/19/17. Each bounce-back to the ICU and 30 day readmission to JH was discussed at a weekly multidisciplinary meeting) using systematic assessment tools to determine the cause of the event and calculation of risk scores (1,2). A bounce-back or readmission was classified as preventable if an omission in standard care, either as an inpatient or outpatient, resulted in the event.

| Syster                                                                                         | ns Analysis                                                     | of <b>B</b>  | ouncebacks Form                                                     | , Cardiac                                                                                          | c Surgery                                            | Syst                                                       | tems                         | Analysis of                                                                                      | Read                                    | missions                                                | Form, Car                                                   | diac Surgery        |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------|
| PATIENT DETAILS<br>Last name, First nar<br>Date of Birth<br>MRN #<br>Primary Cause of Bounceba | me<br>                                                          | ORIGINA      | L PROCEDURE                                                         | RISK PRE<br>Bounceback Risk<br>Predicted risk (%)                                                  | DICTION<br>Score                                     | PATIENT DETAILS<br>Last name, Fi<br>Date of Birth<br>MRN # | rst name<br>                 | BASE                                                                                             | INF WEIGH                               | т                                                       | Rieadmission Risk<br>Predicted risk (%)                     | SK PREDICTION Score |
| NEURO<br>O Delirium                                                                            | RESPIRATORY<br>O Persistent hyp                                 | oxia or hype | CVS<br>ercappia O Persistent Instrone required                      | GI/Renal<br>O NSS Score                                                                            |                                                      | Primary Cause of Rea                                       | dmission:                    |                                                                                                  |                                         |                                                         |                                                             |                     |
| O New onset stroke<br><u>HEME</u><br>O Bleeding or tamponad<br>O Other                         | O SOB<br>O Reintubation<br><u>ID</u><br>O Sepsis<br>O Site infe | ctions       | O Cardiac arrest<br>O New onset atrial fibrillation<br><u>OTHER</u> | O Early nutrition<br>O C difficile or GI<br>O Admission Crea<br>O New onset ren<br>O New requireme | used<br>ulcer<br>atinine<br>al failure<br>ent for HD | O Site II<br>O Pneu<br>O Other                             | ON<br>nfection<br>monia<br>r | CARDIAC<br>O Heart Failure<br>O Pericardial Effusion<br>O Hypotension<br>O Chest Pain<br>O Other | RESPIRA<br>O Pleura<br>O SOB<br>O Other | I Effusion O Afib<br>O Tachy/Brac<br>O VF/VT<br>O Other | ANTICOAG<br>O Bleeding<br>dycardia O Elevated IN<br>O Other | OTHER<br>IR         |
|                                                                                                |                                                                 |              |                                                                     |                                                                                                    |                                                      | Readmission Risk:                                          |                              |                                                                                                  |                                         |                                                         |                                                             |                     |
| Bounceback Risk:                                                                               |                                                                 |              | 1                                                                   |                                                                                                    | 7                                                    |                                                            |                              | Risk Factors                                                                                     | Points                                  | Risk Score Cohorts                                      | Predicted Risk %                                            |                     |
|                                                                                                | Risk Factors                                                    | Points       | Risk Score Cohorts                                                  | Predicted Risk %<br>of Bounceback                                                                  |                                                      |                                                            |                              | Diabetes                                                                                         | 2                                       | Low Risk: <5                                            | of Readmission<br>0-12%                                     |                     |
|                                                                                                | Female                                                          | 5            | Low Risk: <5                                                        | 0-12%                                                                                              |                                                      |                                                            |                              | Chronic Lung Disease                                                                             | 3                                       |                                                         |                                                             |                     |
|                                                                                                | NYHA class III or IV                                            | 4            | Moderate Risk: 5-10                                                 | 12-30%                                                                                             |                                                      |                                                            |                              | EF <u>&lt;</u> 30%<br>Endocarditis                                                               | 3                                       | Moderate Risk: 5-10<br>High Risk: >10                   | >30%                                                        |                     |
|                                                                                                | Urgent/Emergent<br>operation                                    | 3            | High Risk: >10                                                      | >30%                                                                                               |                                                      |                                                            |                              | Combined CAB/Valve<br>Non STS Procedure                                                          | 2<br>3<br>2                             |                                                         |                                                             |                     |
|                                                                                                | Post-op Renal Failure                                           | 12           |                                                                     |                                                                                                    |                                                      |                                                            |                              | DC on Coumadin                                                                                   | 2                                       |                                                         |                                                             |                     |
| Event and Bounce-back ave<br>Lessons Learned                                                   | pidable                                                         |              | o YES o NO                                                          |                                                                                                    | J                                                    | Event and Readmissi<br>Lessons Learned                     | on avoidabl                  | DC Hemoglobin < 8<br>e                                                                           | 2<br>c                                  | YES O NO                                                |                                                             |                     |
| Signature of Attending Phy                                                                     | sician                                                          | _ Date of    | Meeting Date of                                                     | of Readmission                                                                                     |                                                      | Signature of Attendir                                      | ng Physician                 | Dat                                                                                              | te of Meet                              | ing                                                     | Date of Readmissi                                           | on                  |

1 Magruder J, et al. A Predictive Model and Risk Score for Unplanned Cardiac Surgery Intensive Care Unit Readmissions. J Card Surg. 2015 Sep;30(9):685-90 2 Kilic A. et. al. Development and Validation of a Score to Predict the Risk of Readmission After Adult Cardiac Operations. Ann Thorac Surg. 2017 Jan;103(1):66-73



Respiratory complications were the most common cause of bounce-backs 15/40 (30%). For readmissions respiratory problems and infections were equally common and the most frequent causes, each 14/54 (26%).

Four of 40 (10%) bounce-backs and 12/54 (22%) hospital readmissions were preventable. A careful review of the preventable bounce-backs showed that hypotension played an important role in three of the four patients. Regarding readmissions, all four related to anticoagulation were preventable. The other most common preventable readmission category was respiratory, where management of volume overload is critical.

Weekly reviews of bounce-backs and readmissions provide an opportunity for the multi-disciplinary team to identify common reasons, re-evaluate our decision making and our protocols, and implement strategies for prevention.

Defining and analyzing recurrent preventable events provides valuable targets for quality improvement. Analysis of preventable bounce-backs suggests that offsetting the time of administration of beta blockers and diuretics might decrease the risk of hypotension

Readmissions for respiratory problems are frequently due to volume overload. Similarly, readmissions due to overanticoagulation were often the result of inadequate monitoring. Both problems lend themselves to a systems approach to improvement. Daily weights and daily INR, respectively, along with daily provider oversight might be effective preventive interventions.

#### CONCLUSIONS

**Disclosures:** The authors have no relevant financial disclosures or conflicts of interest to report.



# **Sternal Wound Care Practices in Maryland Cardiac Surgery Programs**

Filiz Demirci<sup>1</sup>, Diane Alejo<sup>2</sup>, Clifford Fonner<sup>3</sup>, Jennifer Bobbitt<sup>4</sup>, Gail Hanna<sup>5</sup>, Michael Fiocco<sup>5</sup>, Karen Getson<sup>6</sup>, John Conte<sup>2</sup>, Glenn Whitman<sup>2</sup>, Rawn Salenger<sup>7</sup>, James Todd<sup>8</sup>, Kurt Wehberg<sup>8</sup> and the MCSQI Collaborative<sup>3</sup>.

#### **Objectives:**

- To determine scope of sternal wound practices, variat potential correlation with deep sternal wound infection rates.
- Although DSWI rates are low (0.3% [0.0-0.6%] in ST Cases [2012-2016]), we have selected a systematic evaluate a need for statewide guidelines.

#### **Methods:**

- In March 2017, all 10 MCSQI sites were surveyed to intra and post-operative wound care practices.
- Multiple practitioners in cardiac surgery were consulted initiatives in each phase of wound care and a survey developed.

#### Results

100% response rate (10/10) from all cardiac surgery the state of Maryland

#### Conclusions

- Wound care practices in all 3 phases of care are critic infection prevention.
- Results of our survey demonstrated the variation of p among sites in spite of low DSWI rates.
- This project promoted discussion and debate regardi variation.
- Next steps are to determine if selected wound practic be recommended statewide.
- Other factors such as surgeon skin closure technique role in reduction of sternal wound infection and will be in a future study.

<sup>1</sup> University of Maryland Medical Center, <sup>2</sup> Johns Hopkins University School of Medicine, <sup>3</sup> Maryland Cardiac Surgery Quality Initiative, <sup>4</sup> Washington Adventist Hospital, <sup>5</sup> MedStar Union Memorial Hospital, <sup>6</sup> Western Maryland Health System, <sup>7</sup> University of Maryland St. Joseph Medical Center, <sup>8</sup>Peninsula Regional Medical Center.

| tion and     | MCS                               | QI Survey   | of Cu | rrent Ste |
|--------------|-----------------------------------|-------------|-------|-----------|
| n (DSWI)     | PRE-OPERATIVE PRACTICES           | <b>,</b>    |       |           |
|              | Munirocin in nares                |             |       |           |
|              | Hibiclens night/morning           |             |       |           |
| S Major      | Hair clipped                      |             |       |           |
| approach to  | Facial bair shaved                |             |       |           |
|              | Pet contact minimized             |             |       |           |
|              | ABX w/in 60 minutes of incision   |             |       |           |
|              | No smoking w/in 2 wks             |             |       |           |
| accace nra   | Glucose control                   |             |       |           |
| assess pre,  |                                   |             |       |           |
|              | INTRA-OPERATIVE PRACTICES         |             |       |           |
| ed for their | Sterile technique                 |             |       |           |
| was          | Facilities sterility              |             |       |           |
| mao          | Limited clipping of hair in OR    |             |       |           |
|              | Apply 1010 drape - facial hair    |             |       |           |
|              | Incision Betadine scrub x2        |             |       |           |
| nrograme in  | DuraPrep chin to ankles           |             |       |           |
| programs in  | loban on incision                 |             |       |           |
|              | Pre-op. ABX timeout               |             |       |           |
|              | Duraprep incision before dressing |             |       |           |
|              | Apply Op-Site Visible Dressing    |             |       |           |
| cal for      | Intra-op. glucose control         |             |       |           |
|              | Repeat IV ABX (4 hrs)             |             |       |           |
| ractiona     | Vancomycin paste                  |             |       |           |
| Jacuces      | POST-OPERATIVE PRACTICES          |             |       |           |
|              | Handwashing - dressing change     |             |       |           |
| ing the      | Gloves - wound care mgmt          |             |       |           |
| 9            | Glucose control                   |             |       |           |
|              | Nutrition supplement / mgmt       |             |       |           |
| ces should   | 0%                                | 6 10%       | 20%   | 30%       |
|              | 2016 DSWI Rates (Non Risk         | -Adjusted): |       | CAB Only  |
| e may have a | ST                                | 'S          |       | 0.3%      |
| e assessed   | M                                 | CSQI        |       | 0.2%      |







# Phase of Care Mortality Analysis (POCMA) in Pediatric Cardiac Surgery

Institution(s): Johns Hopkins University School of Medicine<sup>1</sup>; Johns Hopkins Hospital<sup>2</sup>, Children's Hospital of Philadelphia<sup>3</sup>, William Beaumont Hospital<sup>4</sup>, Johns Hopkins School of Nursing<sup>5</sup>

#### INTRODUCTION

Phase Of Care Mortality Analysis (POCMA) developed in Michigan to enhance understanding of mortality and potentially avoidable deaths associated with Adult Cardiac Surgery (Shannon et al, The Annals of Thoracic Surgery, 2012). We have modified POCMA for application to pediatric patients.

POCMA was designed to examine identifiable dimensions of care and clinical events that contribute to a patient's mortality within five phases of care for review.

#### **METHODS**

Providers from Pediatric cardiac ICU, cardiology, cardiac surgery, and safety experts developed the Pediatric POCMA through an iterative process. Revisions were made to enhance situational multidisciplinary awareness, identify avoidable events and promote system changes. Pre-operative factors, patient-level abnormalities, and peri-operative processes and events corresponding to the STS CHSD fields were considered in each phase of care. A primary provider completed the Pediatric POCMA form during case review at multidisciplinary morbidity and mortality (M&M) conferences. Mortalities were aggregated by STAT Category. POCMA forms were then reviewed to assess their utility and to identify potentially avoidable adverse outcomes.



D Alejo BA<sup>1</sup>, K Brown DNP, CRNP, CRNP-AC<sup>1,5</sup>, M Machado Alvarez<sup>1</sup>MD<sup>1</sup>, C Woods-Hill MD<sup>3</sup>, F Shannon<sup>4</sup>, M Jacobs MD<sup>1</sup>, N Hibino MD<sup>1</sup>, L Vricella MD<sup>1</sup>, K Nelson McMillan MD<sup>1</sup>

| idity Analysis - Privileged & Confidential Version 6                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| STS Record ID:<br>Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| CPU Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Autopsy: Yes No                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Post-Op Floor Phase         Handoff         Pharmacologic management         Anti-coagulation, anti-platelet         Other         Respiratory Decompensation         Thrombus identification         CVA/Neuro         Dysrhythmia (Atrial or Vent)         Nutritional support         Fluid management         Surveillance/recognition/Rx         of decompensation         Sepsis prevention/treatment         Communication         Catastrophic event         (specify):         Other: | Discharge Phase         Appropriate disposition: e.g.         Rehab facility/ECF vs. home         Parent Education         Medications         Adequate instruction and support network         Appropriate Timing of Follow-up         Surveillance/recognition/Rx of decompensation         Home health care         Catastrophic event (specify): |  |  |  |  |  |
| cular Infection Pulmonary Hematologic Unknown Other                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| omplete: (Yes / No )                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| ely prohibited. It is protected from disclosure pursuant to the provisions of Michigan Statutes MCL<br>Fuse by the MSTCVS. <mark>Modified by Johns Hopkins CTS / PICU (2 17 2017 Ped POCMA v4</mark> )                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

Surgical mortalities (n=43; 2010-2016) were reviewed with the POCMA form. The Pediatric POCMA identifies 5 phases of care: preoperative, intraoperative, post-operative ICU, post-operative floor and discharge. We identified 14 categories of evaluation within the phases. Examples include: judgement, bypass-related complications, equipment specifications and timely recognition of low cardiac output state. Potentially avoidable events were identified and procedural mortality rates were compared with national norms. Indications for system changes were reviewed and implementation plans were proposed.

• 32/43 (74%) of mortalities occurred >1 week after the procedure

• Majority of mortalities occur in the PICU in the post-op ICU phase of care. Initial events, however, often occur elsewhere, such that impact of events can cross phases

- Detailed "within phase" review may be even more revealing about factors contributing to mortality
  - \* Implication: if arrhythmia  $\rightarrow$  hypotension  $\rightarrow$  arrest, was the original problem provider recognition of arrhythmia or inability to perform atrial EKG?

- - Development Cardiac Resource Attending (CRA) Call dedicated attending for the first post-op night
  - Development of a pediatric massive transfusion protocol and changes to blood bank policies in the cardiac OR

  - Dedicated group of experts evaluating quality CPR management in this complex population Development of standard monitoring in post-op cardiac patients

  - appropriate treatment
  - Development of cardiac specific objective scoring system to enhance team communication Development of blood culture checklist to standardize evaluation of infection and develop plan for

For this complex population receiving multidisciplinary care, Phase of Care Mortality Analysis has helped us refine M&M reviews. POCMA provides a structured forum for discussion, adjudication, and education, and facilitates recognition of opportunities for quality improvement

#### RESULTS

• 31/43 (72%) of the cardiac patient mortalities were either STAT 4 or 5.

- **Implication**: Can we improve provider vigilance and recognition of decompensation for highest-risk patients?
- Implication: Can we improve prevention of secondary complications?
- Implication: Multidisciplinary review of contributing factors is essential
- Technical problem root cause: pacer box or wires?

#### • Review of these mortalities has led to multiple systems-level changes

#### CONCLUSIONS

**Disclosures:** The authors have no relevant financial disclosures or conflicts of interest to report

# CREATING AN ACTIONABLE WORKGROUP: **RIGHT** TEAM + **RIGHT** DATA + **RIGHT** TIME + **RIGHT** ACTIONS = **RIGHT RESULTS** Lisa Berryman, RN, BSN; Cindy Spears, RN

# BACKGROUND

| Monthly workgroup meeting:                                                                             | Blood |
|--------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>Ineffective Team Structure</li> </ul>                                                         | ~     |
| <ul> <li>Data Sharing Only</li> </ul>                                                                  |       |
| ~ Lacked Action                                                                                        |       |
| METHODS                                                                                                | New ~ |
| Restructured TEAM Membership                                                                           | Pre-o |
| <ul> <li>Membership focus on personnel able to make real time decisions on actionable items</li> </ul> | ~     |
| Reorganized Meeting Structure                                                                          | ~     |
| <ul> <li>Focus on 4 metrics in Isolated CABG population</li> </ul>                                     | ~     |
| <ul> <li>Blood utilization (intra-op and post-op)</li> </ul>                                           |       |
| <ul> <li>New onset post-op atrial fibrillation</li> </ul>                                              | ~     |
| <ul> <li>Pre-op beta blocker within 24 hours of incision</li> </ul>                                    | - 1   |
| ~ Prolonged ventilation                                                                                | Prolo |
| <b>DATA</b> cont to team one week mice to mentily                                                      | ~     |
| meeting for review and meeting discussion preparation                                                  | ~     |
| <ul> <li>Published STS data</li> </ul>                                                                 |       |
| <ul> <li>REAL TIME performance of focus metrics</li> </ul>                                             |       |
| <ul> <li>New initiatives supported by evidence based<br/>literature and historical STS data</li> </ul> |       |



Our new workgroup structure allows us to combine the right team with the right data at the right time to implement the right actions and achieve the right results.

# ACTIONS

| Utilization                                                                                                  |            |    |
|--------------------------------------------------------------------------------------------------------------|------------|----|
| Culture change                                                                                               |            |    |
| <ul> <li>Blood only ordered by CV Surgeon</li> </ul>                                                         | 60%        |    |
| <ul> <li>One unit vs. previous standard of two units ordered at a time</li> </ul>                            | 50%<br>40% | 46 |
| onset post op atrial fibrillation                                                                            | 30%        |    |
| Work in progress                                                                                             | 20%        | _  |
| p beta blocker (BB) within 24 hours of incision                                                              | 10%        |    |
| Collaboration with Cardiology to have patient placed on BB at time of consult                                | 0%         | Ç  |
| Pre-op RN notifies surgeon if patient has not<br>received dose of BB within 24 hours                         |            |    |
| OR staff verifies pre-op BB administration time prior to incision                                            |            |    |
| Data abstractor reviews pre-op BB compliance<br>daily and notifies surgeon of opportunity for<br>improvement |            |    |
| nged Ventilation                                                                                             |            |    |
| Fallouts reviewed by Advanced Practice<br>Provider for opportunity                                           | 40%        | 36 |
| CV Intensivist designing pulmonary protocol<br>for identification of high risk patients                      | 20%        |    |
|                                                                                                              |            |    |
|                                                                                                              | 10%        |    |
| CONCLUSION                                                                                                   | 0%         |    |

# RESULTS





#### FINANCIAL AND REGULATORY DISCLOSURE: NONE

# **Results from Michigan TAVR** STS ACSD and STS/ACC TVT Registry Case Matching



Patty Theurer RN, Chang He MS, Melissa Clark RN, Jaelene Williams RN, David Grix CCP, Sheryl Fielding RN, Andrea Jensen MA, Richard L. Prager MD For the MSTCVS Cardiac Surgery Quality Collaborative and the Blue Cross Blue Shield of Michigan Cardiovascular Consortium

#### BACKGROUND

In Michigan, a transcatheter approach was used for 56.5% of Isolated aortic valve procedures in 2016.

Michigan TAVR, a collaboration between the Michigan Society of Thoracic and Cardiovascular Surgeons, (MSTCV) and The Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) cardiologists includes nineteen centers working together to develop quality improvement strategies for the treatment of aortic valve disease in our state.

This analysis determines the case match rate between the Society of Thoracic Surgeons (STS) adult cardiac surgery database and the STS/ACC TVT registry used by these groups to identify the effectiveness of the STS database to capture transcatheter aortic valve replacement (TAVR) procedures.

#### **METHODS**

1,255 TAVR cases were entered in the STS database and 1,267 cases in the TVT Registry. After exclusion criteria were applied, a match algorithm was created using a combination of variables to determine case match rates between registries: Variables used for matching: hospital ID, gender, surgery/procedure date, discharge date, age and/or date of birth.

| RESULTS                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessed for eligibility:       Assessed for eligibility:         STS DATABASE       TVT DATABASE         Exclusions:       Exclusions:         trial valves       mitral clips         Are v 40       Oppropriate to energy                                                          | The overall matc<br>Cardiac Surgery<br>TVT data registri                                                                                                                                                                                           |
| Age < 18                                                                                                                                                                                                                                                                              | <ul> <li>1,194 pairs of particular states while 5 combinations of 5 combinations of 5 combinations of 5 Reasons for case</li> <li>Missed cases</li> <li>Data entry error</li> <li>Cancelled case</li> <li>Uncertainty repatients partic</li> </ul> |
| 28 unmatched STS patients 37 unmatched TVT patients                                                                                                                                                                                                                                   | CO                                                                                                                                                                                                                                                 |
| 18 unmatched STS patients       27 unmatched TVT patients         Match criteria: on unmatched pairs: hospital ID, gender, procedure data, discharge date = 9 pairs matched                                                                                                           | The STS database<br>data regarding the<br>disease by include<br>open surgical val<br>comparative effe                                                                                                                                              |
| B unmatched STS patients       Is unmatched TVT patients         Match criteria: on unmatched pairs: hospital ID, discharge date, age, date of birth = 1 pair matched         8 unmatched STS patients         17 unmatched TVT patients                                              | Education and co<br>exist for data ma<br>the STS and STS                                                                                                                                                                                           |
| Overall total 1247 pairs matched         STS Exact match on 5 variables = 95.1%       TVT Exact match on 5 variables = 94.2%         STS Overall match with 4 variables = 99.4%       TVT Overall match with 4 variables = 98.4%         17 Cases in TVT not in STS                   | Support for the Michigan Soc<br>Collaborative and BMC2 is provi<br>Care Network as part of the BCBS<br>Shield of Michigan works collabor<br>and viewpoints expressed by the                                                                        |
| 8 Cases in STS not in TVT       STS missed cases - 5         TVT missed cases - 8       STS data manager thought trail patients, excluded - 6         Cancelled case not put in STS (education opportunity) - 2         Data Entry Errors account for 4 patients unable to be matched | The outbors of th                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |



#### FINDINGS

ch rate between the STS Adult Database and the STS/ACC ies in our state is 98.9%.

atients matched on five 53 pairs matched on various four variables.

es not matching include:

ors ses not being entered egarding whether to include cipating in studies or trials

#### NCLUSIONS

se provides valuable clinical ne treatment of aortic valve ding both percutaneous and lve procedures, promoting ctiveness research.

ollaboration opportunities inagers abstracting for both S/ACC TVT Registries.

ciety of Thoracic and Cardiovascular Surgeons Quality ided by Blue Cross and Blue Shield of Michigan and Blue SM Value Partnerships program. Although Blue Cross Blue ratively with MSTCVS QC and BMC2, the opinions, beliefs author do not necessarily reflect the opinions, beliefs and of BCBSM or any of its employees.

more information, contact: oordinating Center: 734-998-5918 ordinating Center: 734-998-6400

nis poster have nothing to disclose

#### ORLANDO **HEALTH**<sup>®</sup>

#### A PROCESS IMPROVEMENT INITIATIVE: A COLLABORATIVE TEAM APPROACH AT ORLANDO HEALTH TO IMPROVE PATIENT OUTCOMES AS REFLECTED BY THE SOCIETY OF THORACIC SURGERY STAR RATING SYSTEM

#### Orlando Regional Medical Center

#### Pamela Aleck MSN, RN Clinical Quality Specialist Joanna Gerry DNP ARNP, Jeffrey Bott MD, Mark Sand MD, Steven Hoff MD

#### Background

- Orlando Health (OH) has a cardiothoracic (CT) program and performed 753 surgeries in 2016
- In our continuous effort to provide quality patient care, our cardiothoracic surgeons (CTS) have participated in the Society of Thoracic Surgeon (STS) Registry since 1989
- Participation in the registry qualifies an institution to be recognized for their exemplary outcomes through a three star rating system
- STS introduced the star rating recognition for quality based on mortality, morbidity, use of Internal Mammary Artery (IMA) in 2008
- Compliance require prescribing specific medications for our Coronary Artery Bypass (CAB) patients pre operatively and at discharge (Table 1)
- Participation allows OH to benchmark with other STS participating CT programs
- To track patient outcomes, monthly review of CT patient data were conducted to identify fallout metrics, areas for enhancement and solutions to improve our process and results
- Our Aim was to streamline our processes of reviewing our outcome data, reporting results and determining solutions for improvement

#### Methodology

- Use of a long standing multi-disciplinary collaborative team consisting of our CTS and, advance practice providers (APP's), Cardiovascular (CV) Intensive Care Unit and CV Step Down Unit team members and managers, respiratory, Operating Room team members, Pre-Admission Testing, Clinical Quality Specialist (CQS), and administration
- In 2012, Created an internal report to look at Morbidity, Mortality, Use of IMA, Pre-Operative Beta Blocker, and Discharge medications, as well as 30-Day All Cause Readmission for all STS Categories (Table 1)
- Used National Quality Forum (NQF) measures/definitions for all the STS categories
- The CQS ran internal reports and a patient lists from the monthly completed chart abstractions
- The CQS reviewed and provided a summary of the fallout cases that included the surgeons name
- Fallout cases that were unable to be verified by the CQS were sent back to the abstraction team for further review and correction as appropriate

- discussed

- to the STS guidelines

- program and all measures
- a two star program

#### correct abstraction errors

- exclusions

• Once the corrections were made, a final report was run and presented in our monthly collaborative team meetings

• Fallouts of the chart reviews were discussed in our meetings

STS definition were incorporate in the fallout discussions as needed

• Process deficits, trends, and the reasons contributing to the fallouts were

• The collaborative team discussed and individual departments volunteered to assume ownership and solutions to prevent fallouts

• Educational in-services for documentation regarding the registry definitions/criteria were provided to the committee, team members, discharging physicians, surgeons and APP's

#### Results

• Established a structure in our process of reviewing, reporting and adhering

• Department and team members ownership allowed for hard stop to be placed to prevent fallouts from occurring

• An example of a hard stop was the concurrent double verification process which ensured that the required medications were prescribed at discharge or a reason for not prescribing was documented in the medical records by physicians, surgeons, or APP's

• 2008 through June 2014 we received a two star rating for CAB overall

• With the buy in and support from the collaborative team we saw an improvement from December 2014 through current date, we maintained a three star rating for CAB in all measures except mortality, where we remain

• By applying our process to all STS categories, Aortic Valve Replacement (AVR) and CAB+AVR rating also rose to a three star program

#### Conclusion

• Having chart reviews completed prior to data submission allowed us to

• Understanding of the STS definition aided in documentation requirements for

• By collaborating and giving ownership to the respective departments and teams allowed for standardization for a sustainable processes

• Setting an internal process of reviewing and reporting our outcome metrics allows for continuous monitoring

| Table 1                                 |            |            |              |     |     |        |               |           |       |
|-----------------------------------------|------------|------------|--------------|-----|-----|--------|---------------|-----------|-------|
| STSCategory                             | CAB 2.8    |            |              |     | AVR | 2.8    | AVR + CAB 2.8 |           |       |
| January-December 2016<br>NQF Metrics    | Num        | Den        | Rate         | Num | Den | Rate   | Num           | Den       | Rate  |
| Pre-Operative Beta Blocker              | 375        | 380        | 98.7%        | 57  | 57  | 100.0% | 54            | 54        | 100.0 |
| Use Of IMA                              | <b>404</b> | 404        | 100.0%       | 0   | 0   |        | 58            | 58        | 100.0 |
| Prolonged Intubation                    | 17         | 404        | 4.2%         | 3   | 60  | 5.0%   | 3             | <b>58</b> | 5.2%  |
| Deep Sternal Wound Infection            | 1          | <b>404</b> | 0.2%         | 1   | 60  | 1.7%   | 0             | <b>58</b> | 0.0%  |
| Stroke/CVA                              | 9          | 404        | 2.2%         | 0   | 60  | 0.0%   | 0             | <b>58</b> | 0.0%  |
| PostOp Renal Failure                    | 6          | 404        | 1.5%         | 1   | 60  | 1.7%   | 0             | <b>58</b> | 0.0%  |
| Renal Failure req Dialysis              | 3          | 404        | 0.7%         | 1   | 60  | 1.7%   | 0             | <b>58</b> | 0.0%  |
| Surgical Re-Exploration Any             | 7          | 404        | 1.7%         | 2   | 60  | 3.3%   | 2             | <b>58</b> | 3.4%  |
| Surgical Re-Exploration NQF             | 4          | 404        | 1.0%         | 2   | 60  | 3.3%   | 1             | <b>58</b> | 1.7%  |
| Surgical Re-Exploration for<br>Bleeding | 3          | 404        | 0.7%         | 2   | 60  | 3.3%   | 0             | 58        | 0.0%  |
| Antiplatelets at Discharge              | 395        | 400        | 98.8%        | 55  | 58  | 94.8%  | 55            | 56        | 98.2% |
| Aspirin at Discharge                    | 387        | 388        | <b>99.7%</b> | 54  | 56  | 96.4%  | 54            | 54        | 100.0 |
| ADP Inhibitors at Discharge             | 1          | 396        | 0.3%         | 0   | 58  | 0.0%   | 0             | 55        | 0.0%  |
| Beta Blockers at Discharge              | <b>390</b> | <b>390</b> | 100.0%       | 57  | 57  | 100.0% | 54            | 55        | 98.2% |
| Anti Lipid Treatment at Discharge       | 399        | 400        | 99.8%        | 47  | 58  | 81.0%  | 56            | 56        | 100.0 |
| <b>30 Day Readmissions</b>              | 44         | 400        | 11.0%        | 6   | 58  | 10.3%  | 7             | 56        | 12.5% |
| Mortality (Observed)                    | 8          | 404        | 2.0%         | 2   | 60  | 3.3%   | 3             | 58        | 5.2%  |
| *Indicates Public Reporting             |            |            |              |     |     |        |               |           |       |
| *Indicates Fallouts                     |            |            |              |     |     |        |               |           |       |



\*No Financial or regulatory disclosures

ORLANDO HEALTH® Orlando Regional Medical Center

#### Our Team



# Improving Early Extubation (Less than Six Hours) in Cardiovascular Surgery without Increasing Adverse Respiratory Events (Reintubation, Prolonged Extubation or Pneumonia) Karen G. McNickle, RN, MSN, Dignity Health St. Joseph's Medical Center, Stockton California\*

## BACKGROUND

- Early extubation may enhance patient comfort and has been shown to increase early mobility, avoid postoperative respiratory complications and reduce length of stay.
- The goal of this project was to increase the rate of early without increasing adverse respiratory extubation events (compared to STS National benchmarks).

#### METHODS

- Based on review of STS data, a multidisciplinary team convened and implemented evidence based and hospital system best practice improvement strategies, including: Reduced intraoperative fluid; Reduced end-of-case narcotics; Increased use of reversals.
- Protocols and order sets were updated and staff trained.
- All case types were included as potential for early extubation, subject to meeting defined clinical criteria.
- Rapid cycle change was facilitated by: Use of a bed-side tracking tool; Targeted extubation times; Concurrent case review; Prompt feedback to staff; Weekly data sharing.
- Isolated CABG and Isolated AVR cases were selected for measuring improvements. Non-risk adjusted rates for extubation < 6 hours (un-blinded by surgeon and anesthesiologist), reintubation, prolonged intubation > 24 hours, and post-operative pneumonia were tracked and reported monthly.

## **METHODS** Cont'd



Early extubation increased from 26.6% (222 cases from July 2015-June 2016) to 65.9% (255 cases from July 2016-June 2017), representing an improvement of 145%.



For their dedication to clinical excellence and caring, a special thanks to: Dr. J.D. Morrissey, Dr. A. Tendulkar, Cardiovascular Surgeons; Dr. J. DeBooy, Anesthesiologist; Dr. M. Herrera, Quality Medical Director; Julie Pontarolo-Evans, Director Respiratory Therapy & the R. R.T' team; Martha Engaling, Nursing Director Critical Care; Audea Preyer & Iniobong Ekong, Nursing Supervisors SICU & the SICU R.N.s; Pamela George, Nursing Director Surgical Services; and the CVOR PA's, Nurses, Techs & Perfusionists; Joann Marks, Nursing Director Cardiovascular Services and the Cardiovascular Data& Quality Department team.

|                    | PAT              | IENT LABEL       |  |  |  |  |
|--------------------|------------------|------------------|--|--|--|--|
| 00:00:00           |                  |                  |  |  |  |  |
| nin (Start) (Clear |                  |                  |  |  |  |  |
| 0:                 | к                | 1:               |  |  |  |  |
| ED                 |                  | COMMENTS:        |  |  |  |  |
| MD Order           | RCP not<br>Avail |                  |  |  |  |  |
| MD Order           | RCP not<br>Avail |                  |  |  |  |  |
| MD Order           | RCP not<br>Avail |                  |  |  |  |  |
| MD Order           | RCP not<br>Avail |                  |  |  |  |  |
| MD Order           | RCP not<br>Avail |                  |  |  |  |  |
|                    |                  | J                |  |  |  |  |
|                    |                  |                  |  |  |  |  |
|                    |                  |                  |  |  |  |  |
| king Lo            | og               | Estante.         |  |  |  |  |
| Type of S          | urgery:          | Admitting OHS RN |  |  |  |  |
| Mark all th        | at Apply         | & RT Notes:      |  |  |  |  |
| CABG               |                  | RN:              |  |  |  |  |
| AVR                | MVR              | RT:              |  |  |  |  |
| 🗖 Redo             | Notes:           |                  |  |  |  |  |
| CABG               |                  |                  |  |  |  |  |
| AVR                | MVR              | RN:              |  |  |  |  |
| Redo               | Other            | RT:              |  |  |  |  |
|                    |                  | Notes:           |  |  |  |  |

#### Anesthesia Guidelines for Intraoperative Management During Cardiovascular Surgery

Extubation following cardiac surgery in less than 6 hours in patients who are hemodynamically stable and with no ongoing significant bleeding.

#### Pharmacology:

- Limit narcotics to less than 1000mcg of fentanyl (less than 1500mcg for chronic narcotic user or those with high tolerance due to drug use).
- Consider sufentaryl if they require more narcotic. Consider less narcotic in elderly or those with live dysfunction. Limit narcotic use post pump run.
- Limit benzodiazepines to less than 5mg versed unless indicated to give more and consider using 2-3mg total if elder
- Limit muscle relaxants in the last hour of case to avoid residual NM blockade in ICU. Reverse before leaving the ICU or write for reversals with clear instructions when to give
- Limit total fluid (crystalloid and colloid) for pump cases to less than 2L unless indicated by CVP or other assessment of fluid status. Off pump cases may require more fluid but should be based on a subjective assessment tool (CVP vs respiratory variation in BP).

#### Fransition to ICU:

- Consider starting Propofol if BP stable in the OR to transition to ICU.
- Consider Precedex if patient likely will not tolerate Propofol drip • The goal is a calmly sedated patient arriving to ICU with a medication that is very short acting with no long term sedative effects.
- ICU management
- Limit the use of morphine and benzodiazepines in ICU and use Propofol or Precedex to keep patient sedated until ready to be extubated
- Consider IV Tylenol and small doses of fentanyl to control pain until patient is extubated.





#### **RESULTS Cont'd**

• The reintubation rate was 4.5% compared to 5.5% (pre to post). None of the patients' extubated early required reintubation (post).

Additional improvements: Prolonged ventilation was

reduced by 44%; Post-op pneumonia decreased by 15%;

ICU length of stay was reduced an average of 9 hours and Post-Op length of stay was reduced by 0.4 days.

## CONCLUSIONS

• A reduction in clinical process variation successfully improved early extubation without an increase in adverse post-operative respiratory events. These results support published evidenced based literature.

To maintain improvements, ongoing measurement and reporting of outcomes is recommended.

• Evaluation of the impact on patient satisfaction and calculation of potential cost savings would enhance study

findings. To increase study significance, future analysis could include larger study group sample sizes, risk adjustment and formal statistical analysis.

#### REFERENCES

Hillis et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2011;124:e652 http://circ.ahajournals.org/cgi/reprint/124/23/e652. DOI: 10.1161/CIR.0b013e318242d5c8.

Fitch ZW, Debesa O, Ohkuma R, Duquaine D, Steppan J, Schneider EB, Whitman G. A Protocol-Driven Approach to Early Extubation. After Heart Surgery. Journal of Thoracic and Cardiovascular Surgery. 2014; 147:1344-1350.

Fitch ZW, Whitman G. Incidence, Risk, and Prevention of Ventilator-Associated Pneumonia in Adult Cardiac Surgical Patients: A Systematic Review. Journal of Cardiovascular Surgery 2014;29:196-203.

Katz, Nevin M., Johns Hopkins University Foundation for the Advancement of CTS Care (FACTS-Care). Protocols for Early Extubation After Cardiothoracic Surgery. Presented at the AATS / STS CT Critical Care Symposium; April 27, 2014, Toronto, Ontario. Reddy SLC, Grayson AD, Griffiths EM, Pullan DM, Rashid A. Logistic Risk Model for Prolonged Ventilation After Adult Cardiac Surgery. Annals of Thoracic Surgery. 2007; 84:528-36.

The author has no disclosures. This project was conducted in conjunction with a Dignity Health quality improvement initiative. For more information please contact: Karen.McNickle@DignityHealth.org



## INTRODUCTION

- Operative Mortality 30-day status helps determine the STS star rating (81%) of the score)
- STS National Database summary for Operative Mortality 30-day status from July 1, 2014 – February 15, 2017 (Table 1)
- STS rule change for 30-day status requires ≤ 10% "missing plus unknown" in 2015 data  $\leq$  5% "missing plus unknown" in 2016 data &  $\leq$  2% for "missing plus unknown" in 2017 and forward data

| Table 1 STS National Database (7/1/2014-2/15/2017) |                       |            |  |  |  |  |
|----------------------------------------------------|-----------------------|------------|--|--|--|--|
| Response                                           | Records with Response | % of Total |  |  |  |  |
| All Responses                                      | 754,549               |            |  |  |  |  |
| Alive                                              | 699,531               | 92.7%      |  |  |  |  |
| Dead                                               | 26,778                | 3.6%       |  |  |  |  |
| Unknown                                            | 25,693                | 3.4%       |  |  |  |  |
| Missing                                            | 2,547                 | 0.3%       |  |  |  |  |

## METHODS

- A review of all Adult Cardiac surgery cases in 28 participating hospitals in DFW (45,000+ cases) between January 1, 2008 and December 31, 2016
- STS TQI data cross-matched with claims data from 90 hospitals in North Texas to detect patient activity using the Regional Enterprise Master Patient Index (REMPI) as linkage

## RESULTS

- Graph1 shows the trend of "Status at 30 days-Unknown" over 9 years
- Patients listed as "Unknown" dropped from 17.9% prior to matching to 1.1% afterwards
- The matching process allowed us to track patients even when subsequent encounters were at different hospitals



# Wanted Dead or Alive, Not Un Known Update Cathy Knoff<sup>1, 3</sup>, Morley Herbert<sup>1,2</sup>, Syma Prince<sup>1,3</sup>, Baron Hamman<sup>1</sup>

<sup>1</sup>Texas Quality Initiative <sup>2</sup>Medical City Dallas Hospital <sup>3</sup>HCA, North Texas Division

- There are a total of 5 hospital systems participating in TQI, ranging from 1 hospital to 11 hospitals per system
- Further analysis by hospital system demonstrates hospital system-5 and sytem-2 (Graphs 2 & 3) who already have an existing process in place to collect the Operative Mortality 30-day status information, therefore missing very few patients and meeting the STS target thresholds
- Graphs 4 & 5 show hospital system-1 and system-4, who required a major reconfiguration of and/or additional resources for their data collection processes to accurately collect the Operative Mortality 30-day status follow-up data
- Hospital systems achieved this by:
  - New 30-day phone calls
  - New access to outpatient clinic records
  - Encourage surgeons/offices to communicate patient follow-up visits
  - TQI REMPI data matching
- Graph 6 shows hospital system-3, who is still struggling to change processes to meet or exceed the minimum threshold for collection of Operative Mortality 30-day status



## **STS TARGET THRESHOLDS ACHIEVED?**

- Graphs 7 & 8 reveal individual hospital rates of "missing plus unknown" for 2015 & 2016 respectively
- The blue shaded bars are sites that meet or exceed the STS required percentage to achieve a star rating



## **UNKNOWNS BY HOSPITAL SYSTEM**

- The red shaded bars are sites that do not meet the STS required percentage to achieve a star rating
- Lower volume programs may have difficulty meeting the threshold as there is less tolerance for missing cases
- It is difficult but not impossible to achieve the new STS mandated requirements



#### CONCLUSION

Achieving the STS mandated rate of 10% in 2015 and 5% in 2016 for "Status 30 days-Unknown" was difficult but achievable

Meeting the new 2% in 2017 and beyond for "Status 30 days-Unknown" is achievable for many, but may require a complete culture change for others

Data Managers struggle to find 30-day status and require the support of surgeons, hospital administration, and other support staff

- and services to locate patient information
- The lower the hospital volume the greater the opportunity to miss
- the STS mandated threshold and thus losing a star rating