# Surgical AF Ablation : Lesion Sets and Energy Sources

# What are the data ?



Steven F Bolling, MD Cardiac Surgery University of Michigan



# Disclosures

 Consultant/Advisory Board: Abbott, Edwards Lifesciences

• Ownership Interest: Millipede, Pipeline



# Surgical AF Ablation : Lesion Sets and Energy Sources

# What are the recommendations ?



# 2014 AHA/ACC/HRS Guidelines Surgical AF Ablation

| Recommendation                          | COR | LOE        |
|-----------------------------------------|-----|------------|
| An AF surgical ablation procedure is    |     |            |
| <b>reasonable</b> for selected patients | lla | $\bigcirc$ |
| with AF undergoing cardiac surgery for  |     |            |
| other indications                       |     |            |

J Am Coll Cardiol. 2014;64(21):2246-80



Damiano et al

The effect of the Cox-maze procedure for atrial fibrillation concomitant to mitral and tricuspid valve surgery

Surgery for Acquired Cardiovascular Disease

Niv Ad, MD, 5 Linda Henry,

> Objectiv valve and

> AF there the effect

> Methods

were inc

Patients y

of AF res

Results:

stroke/tra

mortality

(92%, 9)82%, res

(4 out of 2

propensit

underwer

additive

surgeon e

#### The long-term outcome of patients with coronary disease and atrial fibrillation undergoing the Cox maze procedure

surgery v Ralph J. Damiano, Jr, MD Sydney L. Gaynor, MD Marci Bailey, RN Sunil Prasad, MD James L. Cox, MD John P. Boineau, MD Richard P. Schuessler, PhD

to perfori Conclusi experienc average. thromboe to achiev

The prevalence during the past regurgitation. 7 tive valvular di of life-older development of



ACQUIRED CARDIOVASCULAR DISEASE: ARRHYTHMIAS

#### Late outcomes after the Cox maze IV procedure for atrial fibrillation

Matthew C. Henn, MD, Timothy S. Lancaster, MD, Jacob R. Miller, MD, Laurie A. Sinn, RN, BSN, Richard B. Schuessler, PhD, Marc R. Moon, MD, Spencer J. Melby, MD, Hersh S. Maniar, MD, and Ralph J. Damiano, Jr, MD

#### ABSTRACT

Objective: The Cox maze IV procedure (CMP gold standard for surgical ablation; however consensus definitions of treatment failure have compare to reported outcomes of catheter-based tional outcomes of patients who underwent a 5 years of follow-up.

Methods: Between January 2002 and Septem prospectively on 576 patients with AF who und from AF, with and without AADs, were compar

Results: Follow-up at any time point was 89%. AF was 93 of 119 (78%), and freedom from AF No differences were found in freedom from AF, 4, and 5 years for patients with paroxysmal AF ( longstanding persistent AF (n = 305), or for the versus a concomitant CMP Duration of preone

#### **Original Articles**

#### The Cox-Maze Procedure for Lone Atrial Fibrillation A Single-Center Experience Over 2 Decades

Timo Weimar, MD; Stefano Schena, MD, PhD; Marci S. Bailey, RN, MSN; Hersh S. Maniar, MD; Richard B. Schuessler, PhD; James L. Cox, MD; Ralph J. Damiano, Jr, MD

left-sided CMPIV (n = 44). Perioperative va Background—The Cox-Maze procedure (CMP) has achieved high success rates in the therapy of atrial fibrillation (AF) while becoming progressively less invasive. This report evaluates our experience with the CMP in the treatment of lone AF over 2 decades and compares the original cut-and-sew CMP-III to the ablation-assisted CMP-IV, which uses bipolar radiofrequency and cryoenergy to create the original lesion pattern.

> Methods and Results-Data were collected prospectively on 212 consecutive patients (mean age, 53.5±10.4 years; 78%) male) who underwent a stand-alone CMP from 1992 through 2010. The median duration of preoperative AF was 6 (interquartile range, 2.9-11.5) years, with 48% paroxysmal and 52% persistent or long-standing persistent AF. Univariate analysis with preoperative and perioperative variables used as covariates for the CMP-III (n=112) and the

|           |          | om AF<br>m from               |
|-----------|----------|-------------------------------|
| 70 - >90% | in NSR ! | ulation<br>iinutes;<br>AF off |

Conclusions—The CMP, although simplified and shortened by alternative energy sources, has excellent results, even with improved follow-up and stricter definition of failure. (Circ Arrhythm Electrophysiol, 2012;5:8-14.)

Key Words: ablation ■ arrhythmia heartrhythmdisorders atrial fibrillation ■ surgery ■ tachyarrhythmias

A Supplemental material is available online

The first effective surgical treatment for atrial (AF), now formally known as the Cox maze (CMP), was introduced by James Cox, MD, in

trial fibrillation (AF) is the most common sustained A arrhythmia worldwide, with an expected increase in our aging population.1 In addition to the significant morbidity and mortality secondary to hemodynamic compromise and tachycardia-induced cardiomyopathy in some patients, stroke remains the most feared complication.2 AF accounts for ~25% of strokes in patients >80 years and increases a person's risk of stroke by 5-fold.3 The limitations of pharmacological therapy, with failure rates as high as 60%, have led to the development and proliferation of interventional approaches in the treatment of AF, including catheter ablation and surgery.4-7

#### Clinical Perspective on p 14

In 1987, Dr. Cox introduced the maze procedure (CMP) for

early follow-up was excellent and included 24-hour Holter monitoring, only few patients had ECGs or prolonged monitoring at long-term follow-up.5,11 The end point was generally self-reported freedom from symptomatic AF. Moreover, this procedure was not widely adopted because of its complexity and invasiveness.

The development of alternative energy sources has enabled surgeons to create lines of ablation to replace most incisions of the original CMP-III, which shortened and simplified the procedure,12,13 In our laboratory, bipolar radiofrequency energy was able to create reliable transmural lines of ablation while minimizing the risk of collateral damage to the surrounding tissue.14-16 In 2002, our institution introduced a new iteration termed the CMP-IV, which used bipolar radiofrequency and cryoenergy to replace most of the original



# 2017 STS Clinical Practice Guidelines Mitral Valve

- Multiple populations studied: 11 RCTs, 4 Metaanalyses, Several Institutional experiences
   Recommendation:
- Surgical ablation for AF can be performed without additional risk of operative mortality or major morbidity, and

is **recommended** at the time of concomitant mitral

operations to restore sinus rhythm. (COR: I, LOE: A)



# 2017 STS Clinical Practice Guidelines CABG, AVR, AVR+CABG

• Limited populations studied: 2 RCTs, 2 Meta-analyses, limited Institutional experiences

Recommendation:

 Surgical ablation for AF can be performed without additional risk operative of mortality or major morbidity, and

is **recommended** at the time of concomitant

isolated AVR, isolated CABG, and AVR+CABG operations to restore sinus rhythm. (COR: I, LOE: B-NR)

# 2017 AATS Expert Consensus Guidelines Stroke... and Survival

Recommendation:

- It is *reasonable* to choose to perform a concomitant surgical ablation procedure for patients with a history of AF over no treatment of AF because there is no increased risk of perioperative stroke/TIA.
- (COR: IIA, LOE: A)



# **2017 AATS Expert Consensus Guidelines**



Forest plot: Improved perioperative survival (<30 days) with concomitant surgical ablation.



(COR: I, LOE: A)

# Surgical AF Ablation : Lesion Sets and Energy Sources

# We should do something ...but do we?



# **US Rates of Surgical Ablation**



CARDIOTH

TRIALS netwo



# Cut and Sew MAZE

# Complex, Morbid... and Scary!

# Never adopted !

FFFF



# CRYO and RF Ablation Thermal injury

-60° C

Formation of intra and extracellular ice crystals. This disrupts the cell membrane and cytoplasmic organelles





# Trends in Surgical AF Ablation



**Surgical AF Ablation** Do something!...but what ? - What lesions ? **Bi-atrial**? Left atrial only ? PVI ? - What energy source ? RF, cryo, Us, micro, laser



# Surgical Ablation - Modified Cox Maze IV

#### Left Atrial Lesion Set

**Right Atrial Lesion Set** 





Sternotomy



Cox : More lesions are better !



### Left Atrial Ablation Versus Biatrial Ablation in the Surgical Treatment of Atrial Fibrillation



LEFT ATRIAL VERSUS BIATRIAL ABLATION FOR AF

1402

KIM ET AL

Fig 3. Cumulative incidence of late atrial fibrillation (AF) in the ab The present study revealed that, compared with biash trial ablation, LA ablation resulted in more frequent AF tri recurrence in chronic AF patients undergoing MV surgery. Adding the right-side ablation did not much va prolong procedural time (approximately 10 minutes).

Serious bradyarrhythmia was clinically irrelevant with the biatrial procedure.

> Ann Thorac Surg 2011;92:1397-405

#### Breda et al

#### Comparison of Bilateral and Unilateral RF Ablation In RF: Early Results

Table 3. Changes in the Cardiac Rhythm during Postoperative and Follow-Up Periods

|                         | Uniatrial Group  | Biatrial Group |
|-------------------------|------------------|----------------|
| Postoperative Period, % | •                | 54.00H->       |
| Sinus rhythm            | 60               | 80             |
| Atrial fibrillation     | 40               | 13.3           |
| Node rhythm             | 8 <u>22</u>      | _              |
| Pacemaker               | -                | 6.7            |
| At discharge, %†        |                  |                |
| Sinus rhythm            | 60               | 60             |
| Atrial fibrillation     | 40               | 26.7           |
| Node rhythm             | 3675             | 13.3           |
| Pacemaker               | 19 <del>14</del> | -              |
| Follow-up period‡       |                  |                |
| Sinus rhythm            | 46.7             | 73.3           |
| Atrial fibrillation     | 53.3             | 13.35          |
| Node rhythm             | 0 <del>m</del>   | 13.35          |
| Pacemaker               | -                | -              |

The Heart Surgery Forum #2010-1119 14 (5), 2011 [Epub October 2011] doi: 10.1532/HSF98.20101119

Bi - atrial lesions are better !



#### Right atrial lesions do not improve the efficacy of a complete left atrial lesion set in the surgical treatment of atrial fibrillation, but they do increase procedural morbidity

Lori K. Soni, MD, Sophia R. Cedola, BS, Jacob Cogan, BA, Jeffrey Jiang, BS, Jonathan Yang, MD, Hiroo Takayama, MD, and Michael Argenziano, MD



Bi - atrial lesions are not better !

# Left-Sided Surgical Ablation for Patients With Atrial Fibrillation Who Are Undergoing Concomitant Cardiac Surgical Procedures



Niv Ad, MD, Sari D. Holmes, PhD, Deborah Lamont, RN, and Deborah J. Shuman, BS Inova Heart and Vascular Institute, Falls Church, Virginia

*Conclusions.* LA-only ablation yielded acceptable success rates, primarily in patients with shorter AF duration and smaller LA. However, success was reduced in patients with traditional predictors of failure. Well-designed studies with standardized lesion sets and ablation tools are required to determine whether full Cox maze yields better outcomes in patients with more advanced AF.

Bi - atrial lesions are better...for some !

# **Rhythm outcome predictors after concomitant surgical ablation for atrial fibrillation: A 9-year, single-center experience**

Simon Pecha, MD, Timm Schäfer, MD, Irina Subbotina, MD, Teymour Ahmadzade, MD, Hermann Reichenspurner, MD, PhD, and Florian Mathias Wagner, MD

The statistically significant predictors for SR after 1 year were left atrial diameter, AF duration, preoperative paroxysmal AF, postoperative SR, and <u>biatrial</u> <u>ablation for persistent AF.</u>

# LA box vs. PVI (no box) Freedom from AF - box better!





Damiano RJ, et al. J Thorac Cardiovasc Surg. 2011 Jan;141(1):113-21.

Surgical AF Ablation Do something! - What lesions: Bi-atrial - larger LA, longer and persistent AF

Left atrial box > PVI paroxysmal AF





# Biatrial ablation vs. left atrial concomitant surgical ablation for treatment of atrial fibrillation: a meta-analysis

# Kevin Phan<sup>1,2</sup>, Ashleigh Xie<sup>1</sup>, Yi-Chin Tsai<sup>3</sup>, Narendra Kumar<sup>4</sup>, Mark La Meir<sup>4,5</sup>, and Tristan D. Yan<sup>1,6\*</sup>

<sup>1</sup>The Collaborative Research (CORE) Group, Macquarie University Hospital, Macquarie University, 2 Technology Place, Sydney, Australia; <sup>2</sup>Sydney Medical School, The University of Sydney, Sydney, Australia; <sup>3</sup>The Prince Charles Hospital, Chermside, Australia; <sup>4</sup>Department of Cardiothoracic Surgery and Cardiology, Academic Hospital Maastricht and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands; <sup>5</sup>University Hospital Brussels, Brussels, Belgium; and <sup>6</sup>Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, University of Sydney, Sydney, Sydney, Sydney, Sydney, Australia

Received 30 April 2014; accepted after revision 18 July 2014; online publish-ahead-of-print 21 October 2014



|                                    | BA                  |           | LA       |                      |        | Odds Ratio          |      | Odds Ratio                              |
|------------------------------------|---------------------|-----------|----------|----------------------|--------|---------------------|------|-----------------------------------------|
| Study or Subgroup                  | Events              | Total     | Events   | Total                | Weight | M-H, Random, 95% Cl | Year | M-H, Random, 95% Cl                     |
| Discharge SR                       |                     |           |          |                      |        |                     |      |                                         |
| Takami                             | 18                  | 30        | 13       | 20                   | 7.5%   | 0.81 [0.25, 2.61]   | 1999 | )                                       |
| Guden                              | 38                  | 48        | 47       | 57                   | 10.8%  | 0.81 [0.30, 2.14]   | 2001 |                                         |
| Srivastava                         | 23                  | 40        | 21       | 40                   | 13.2%  | 1.22 [0.51, 2.96]   | 2008 |                                         |
| Wang                               | 110                 | 150       | 115      | 149                  | 37.1%  | 0.81 [0.48, 1.38]   | 2009 | ) — — — — — — — — — — — — — — — — — — — |
| McCarthy                           | 64                  | 91        | 136      | 175                  | 31.3%  | 0.68 [0.38, 1.21]   | 2010 | ) —=+                                   |
| Subtotal (95% CI)                  |                     | 359       |          | 441                  | 100.0% | 0.81 [0.59, 1.12]   |      |                                         |
| Total events                       | 253                 |           | 332      |                      |        |                     |      |                                         |
| Heterogeneity: τ <sup>2</sup> =0.0 | 0; $\chi^2 = 1.2$   | 0, df = 0 | 4(P=0.8) | 8); I <sup>2</sup> = | 0%     |                     |      |                                         |
| Test for overall effect:           | Z=1.28 (            | P = 0.2   | 0)       |                      |        |                     |      |                                         |
|                                    |                     |           |          |                      |        |                     |      |                                         |
| 6-month SR                         |                     |           |          |                      |        |                     |      |                                         |
| Takami                             | 25                  | 30        | 16       | 20                   | 5.9%   | 1.25 [0.29, 5.37]   | 1999 | )                                       |
| Srivastava                         | 23                  | 40        | 22       | 40                   | 15.9%  | 1.11 [0.46, 2.68]   | 2008 |                                         |
| Kim                                | 154                 | 199       | 60       | 85                   | 37.9%  | 1.43 [0.80, 2.53]   | 2011 | +=                                      |
| Soni                               | 69                  | 91        | 136      | 214                  | 40.4%  | 1.80 [1.03, 3.13]   | 2013 | ;                                       |
| Subtotal (95% CI)                  |                     | 360       |          | 359                  | 100.0% | 1.49 [1.05, 2.12]   |      | -                                       |
| Total events                       | 271                 |           | 234      |                      |        |                     |      | _                                       |
| Heterogeneity: $\tau^2 = 0.0$      | 0: $\gamma^2 = 0.9$ | 6. df=3   | 3(P=0.8) | 1): $l^2 =$          | 0%     |                     |      |                                         |
| Test for overall effect:           | 7 = 2.23            | P = 0.0   | 3)       | .,,, .               | 0,0    |                     |      |                                         |
| root for orotal chool              |                     |           |          |                      |        |                     |      |                                         |
| 1 year SR                          |                     |           |          |                      |        |                     |      |                                         |
| McCarthy                           | 77                  | 91        | 149      | 175                  | 23.0%  | 0.96 [0.47, 1.94]   | 2010 | ) —                                     |
| Kim                                | 139                 | 199       | 51       | 85                   | 32.8%  | 1.54 [0.91, 2.62]   | 2011 |                                         |
| Albage                             | 36                  | 44        | 51       | 71                   | 15.5%  | 1.76 [0.70, 4.45]   | 2011 |                                         |
| Soni                               | 74                  | 91        | 134      | 214                  | 28.7%  | 2.60 [1.43, 4.71]   | 2013 |                                         |
| Subtotal (95% CI)                  |                     | 425       | 101      | 545                  | 100.0% | 1.64 [1.09, 2.47]   | 2010 | · • • • • • • • • • • • • • • • • • • • |
| Total events                       | 326                 |           | 385      |                      |        | - / -               |      |                                         |
| Heterogeneity: $\tau^2 = 0.0$      | 6: $\gamma^2 = 4.5$ | 9. df=:   | 3(P=0.2) | 0): $I^2 =$          | 35%    |                     |      |                                         |
| Test for overall effect:           | Z = 2.36            | P = 0.0   | 2)<br>2) | 0,,,, -              | 0070   |                     |      |                                         |
|                                    |                     | 0.0       | -/       |                      |        |                     |      |                                         |
| >1 year SR                         |                     |           |          |                      |        |                     |      |                                         |
| Srivastava                         | 25                  | 40        | 23       | 40                   | 15.3%  | 1.23 [0.50, 3.02]   | 2008 | 3                                       |
| Deneke                             | 42                  | 64        | 48       | 66                   | 20.5%  | 0.72 [0.34, 1.51]   | 2009 | )                                       |
| Wang                               | 116                 | 150       | 121      | 149                  | 31.2%  | 0.79 [0.45, 1.38]   | 2009 | )                                       |
| Kim                                | 83                  | 199       | 27       | 85                   | 33.1%  | 1.54 [0.90, 2.63]   | 2011 | +                                       |
| Subtotal (95% CI)                  |                     | 453       |          | 340                  | 100.0% | 1.03 [0.70, 1.51]   |      |                                         |
| Total events                       | 266                 |           | 219      |                      |        |                     |      | ſ                                       |
| Heterogeneity: $\tau^2 = 0.0$      | 4: $\chi^2 = 4.0$   | 6. df=    | 3(P=0.2) | 6): / <sup>2</sup> = | 26%    |                     |      |                                         |
| Test for overall effect:           | Z = 0.16 (          | P = 0.8   | 7)       | -,,, _               |        |                     |      |                                         |
|                                    | (                   | 0.0       | - /      |                      |        |                     |      |                                         |
|                                    |                     |           |          |                      |        |                     |      | + + + + + + + + + + + + + + + + + + + + |
|                                    |                     |           |          |                      |        |                     |      | 0.1 0.2 0.5 1 2 5 10                    |
|                                    |                     |           |          |                      |        |                     |      | Favours LA Favours BA                   |

**Biatrial or Left Atrial Lesion Set for Ablation During Mitral Surgery: Risks and Benefits** 



At Northwestern, we have never endorsed the concept that all patients must be treated with BA lesions, and have used different lesions in patients at surgeons' discretion



### SURGICAL ABLATION OF ATRIAL FIBRILLATION DURING MITRAL VALVE SURGERY THE CARDIOTHORACIC SURGICAL TRIALS NETWORK

# NEJM March 16, 2015



National Heart, Lung, and Blood Institute National Institute of Neurological Disorders and Stroke





# **Surgical Ablation Options**



#### LAA closure performed in all patients



# **Operative Characteristics**

|                                       | MVS Alone<br>(N=127) | MVS & Ablation<br>(N=133) |
|---------------------------------------|----------------------|---------------------------|
| Mitral Valve Surgery                  |                      |                           |
| Replacement                           | 61 (48.4)            | 54 (40.6)                 |
| Repair                                | 65 (51.6)            | 79 (59.4)                 |
| Concomitant Procedures                |                      |                           |
| Tricuspid Valve Surgery               | 48 (38.1)            | 50 (37.6)                 |
| Aortic Valve Replacement              | 20 (15.9)            | 14 (10.5)                 |
| CABG                                  | 25 (19.8)            | 27 (20.3)                 |
| Cardiopulmonary Bypass Time<br>(min)* | 132.5 <u>+</u> 51    | 147.8 <u>+</u> 63.3       |
| Cross-Clamp Time (min)                | 95.9 <u>+</u> 36.3   | 102.9 <u>+</u> 41.5       |
|                                       |                      |                           |

\*P-Value for Cardiopulmonary Bypass Time = 0.03



# **Operative Characteristics**

|                                        | MVS Alone<br>(N=127) | MVS & Ablation<br>(N=133) |
|----------------------------------------|----------------------|---------------------------|
| Mitral Valve Surgery                   |                      |                           |
| Replacement                            | 61 (48.4)            | 54 (40.6)                 |
| Repair                                 | 65 (51.6)            | 79 (59.4)                 |
| Concomitant Procedures                 |                      |                           |
| Tricuspid Valve Surgery                | 48 (38.1)            | 50 (37.6)                 |
| Aortic Valve Replacement               | 20 (15.9)            | 14 (10.5)                 |
| CABG                                   | 25 (19.8)            | 27 (20.3)                 |
| Cardiopulmonary Bypass Time<br>(min)*  | 132.5 <u>+</u> 51    | 147.8 <u>+</u> 63.3       |
| Cross-Clamp Time (min)                 | 95.9 <u>+</u> 36.3   | 102.9 <u>+</u> 41.5       |
| *P-Value for Cardiopulmonary Bypass Ti | me = 0.03            | TTC                       |

CARDIOTHORACIC SURGICAL TRIALS NELWON

# **Primary Endpoint**



# **Quality of Life**

|                                 | MVS Alone<br>(N=127) | MVS & Ablation<br>(N=133) | P-Value |
|---------------------------------|----------------------|---------------------------|---------|
| SF-12                           |                      |                           |         |
| Physical Function               | 45.3 ±7.9            | 44.3 ±9.0                 | 0.38    |
| Mental Function                 | 48.5 ±6.5            | 48.0 ±6.3                 | 0.56    |
| AF Severity Scale               |                      |                           |         |
| Daily AF –no. (%)               | 42 (45.2)            | 20 (19.8)                 | <0.001  |
| Life Rating (1-10, median)      | 8.0 (7,9)            | 8.0 (7,9)                 | 0.45    |
| NYHA Class III + IV –no.<br>(%) | 3 (2.9)              | 8 (7.0)                   | 0.17    |





Freedom From AF (%)

# **Pacemaker Implantation**



# What Energy Source ?

# RF vs Cryo



#### ORIGINAL ARTICLE

#### Surgical Ablation of Atrial Fibrillation during Mitral-Valve Surgery

A. Marc Gillinov, M.D., Annetine C. Gelijns, Ph.D., Michael K. Parides, Ph.D., Joseph J. DeRose, Jr., M.D., Alan J. Moskowitz, M.D., Pierre Voisine, M.D., Gorav Ailawadi, M.D., Denis Bouchard, M.D., Peter K. Smith, M.D., Michael J. Mack, M.D., Michael A. Acker, M.D., John C. Mullen, M.D., Eric A. Rose, M.D., Helena L. Chang, M.S., John D. Puskas, M.D.,
Jean-Philippe Couderc, Ph.D., Timothy J. Gardner, M.D., Robin Varghese, M.D., Keith A. Horvath, M.D., Steven F. Bolling, M.D., Robert E. Michler, M.D., Nancy L. Geller, Ph.D., Deborah D. Ascheim, M.D., Marissa A. Miller, D.V.M., Emilia Bagiella, Ph.D., Ellen G. Moquete, R.N., Paula Williams, M.S.,
Wendy C. Taddei-Peters, Ph.D., Patrick T. O'Gara, M.D., Eugene H. Blackstone, M.D., and Michael Argenziano, M.D., for the CTSN Investigators\*

| TR surgery                            | 26 (38.8)   | 24 (36.4)   |
|---------------------------------------|-------------|-------------|
| AVR                                   | 8 (11.9)    | 6 (9.1)     |
| $CABG^+$                              | 8 (11.9)    | 19 (28.8)   |
| Other                                 | 10 (14.9)   | 6 (9.1)     |
| Cardiopulmonary Bypass Time (minutes) | 143.3 ±65.9 | 152.4 ±60.8 |
| Cross-clamp Time (minutes)            | 98.4 ±38.7  | 107.4 ±44.0 |
| Ablation Device <sup>€</sup>          |             |             |
| Unipolar RF                           | 18 (26.9%)  | 26 (40.0%)  |
| Bipolar RF                            | 29 (43.3%)  | 24 (36.9%)  |
| Cryoablation                          | 25 (37.3%)  | 41 (63.1%)  |



# Catheter ablation - RF vs Cryo





## STS Adult Cardiac Surgery Database July 1, 2011 – June 30, 2014

89,668 Patients isolated MVRR

**Included:** Patients with associated CABG, ASD closure, and tricuspid valve repair (TVr). **Excluded:** Previous MitraClip procedures, missing gender or age information, and/or right atrial SA only

#### 88,765 Patients



# **Results**

#### Effects of AF Type, Energy Source, and Lesion Set

| In-Hospital Outcomes         | Variable         | Risk A djusted<br>OR [95% CI] | p-value |  |
|------------------------------|------------------|-------------------------------|---------|--|
|                              | Parox/Persist AF | 1.02 [0.91-1.15]              | 0.7450  |  |
|                              | Cryo vs. RF      | 0.71 [0.54-0.92]              | 0.0111  |  |
| <b>Operative Mortality</b>   | RF+Cryo vs. RF   | 0.81 [0.50-1.09]              | 0.1584  |  |
|                              | C&S vs. RF       | 0.81 [0.55-1.19]              | 0.2844  |  |
|                              | LA vs. BA        | 0.85 [0.71-1.02]              | 0.0775  |  |
|                              | Parox/Persist AF | 0.98 [0.92-1.04]              | 0.3913  |  |
| Composite Major<br>Morbidity | Cryo vs. RF      | 1.06 [0 94-1.20]              | 0.3492  |  |
|                              | RF+Cryo vs. RF   | 1.02 [0 87-1.20]              | 0.8168  |  |
|                              | C&S vs. RF       | 0.83 [0.66-1.05]              | 0.1220  |  |
|                              | LA vs. BA        | 0.92 [0.83-1.03]              | 0.1474  |  |
|                              |                  |                               | C       |  |

CARDIOTHORACIC SURGICAL TRIALS NETWORK

| Surgical Ablation Procedures Performed by Operation Type |                             |                           |                           |                                |                                    |                             |         |  |
|----------------------------------------------------------|-----------------------------|---------------------------|---------------------------|--------------------------------|------------------------------------|-----------------------------|---------|--|
| Variable                                                 | MVRR<br>±CABG<br>(N=21,992) | AVR±<br>CABG<br>(N=9,875) | AVR<br>+MVRR<br>(N=2,304) | Isolated<br>CABG<br>(N=14,334) | Other<br>Concomitant<br>(N=10,252) | Stand<br>Alone<br>(N=3,268) | p-value |  |
| LA only location                                         | 50.9                        | 57.9                      | 52.1                      | 58.0                           | 50.5                               | 37.2                        |         |  |
| <b>Bi-atrial location</b>                                | 40.0                        | 30.7                      | 37.9                      | 29.3                           | 38.1                               | 56.3                        | <0.0001 |  |
| Atrial Location Not<br>Documented                        | 9.1                         | 11.4                      | 10.0                      | 12.7                           | 11.4                               | 6.5                         | <0.0001 |  |
| Primarily<br>Endocardial                                 | 52.4                        | 26.6                      | 49.3                      | 22.0                           | 39.9                               | 23.6                        |         |  |
| Primarily Epicardial                                     | 31.2                        | 56.3                      | 35.6                      | 55.8                           | 43.4                               | 72.5                        | <0.0001 |  |
| Ablation Location<br>Not Documented                      | 16.4                        | 17 1                      | 15 1                      | 22.2                           | 16.7                               | 3.9                         |         |  |
| RF only                                                  | 27.0                        | 43.1                      | 28.8                      | 42.5                           | 34.0                               | 67.8                        |         |  |
| Cryo only                                                | 23.8                        | 8.9                       | 19.5                      | 7.4                            | 15.1                               | 9.2                         | <0.0001 |  |
| CAS only                                                 | 7.6                         | 8.6                       | 9.0                       | 10.2                           | 9.5                                | 0.9                         |         |  |
| RF+Cryo                                                  | 11.8                        |                           | 11 0                      |                                | Ч /                                | 11.0                        |         |  |
| LAA obliter ted                                          | 87.7                        | 88.5                      | 86.3                      | 88.6                           | 85.9                               | 63.9                        | 2.0001  |  |
|                                                          |                             |                           |                           |                                |                                    |                             | MCISN . |  |

V

CARDIOTHORACIC SURGICAL TRIALS NETWORK

Surgical AF Ablation Do something! Lesions: Bi-atrial - larger LA, longer and persistent AF LA box > PVI - parox AF

Energy : Cryo inside - MVr RF outside - AVR/ CABG

Take the LAA!

