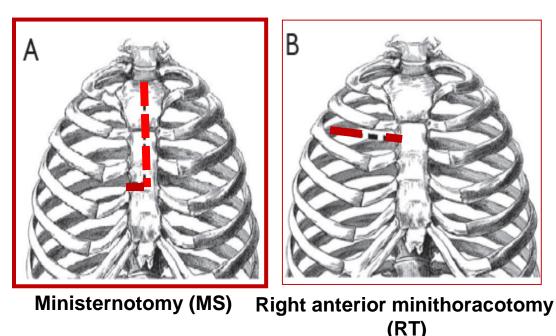
STS/EACTS Latin America Cardiovascular Surgery Conference September 21-22, 2017 | Cartagena, Colombia

info@cardiovascularsurgeryconference.org www.CardiovascularSurgeryConference.org

Minimally Invasive AVR: Thoracotomy vs. Hemisternotomy

JUAN SANTIAGO JARAMILLO, MD

Chief of Cardiac Surgery Department Clínica CardioVID Medellín, Colombia jsjaramillo@vid.org.co



of Thoracic

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32

MIAVR techniques

This approach has now become an established alternative to Full sternotomy (FS) in order to reduce the "invasiveness" of the surgical procedure, while maintaining the same efficacy, quality and safety of a conventional approach.

Minimally Invasive AVR:

- Reduced bleeding
- Pain
- Less wound Infection
- Length of postoperative stay

MIAVR has been shown to reduce postoperative mortality and morbidity

Borger et al . MIS-RDAVR in a RANDOMIZED TRIAL.

Ann Thorac Surg 2015;99:17-25

Phan et al. Network meta-analysis of ministernotomy vs. Minithoracotomy.

Ann Cardiothorac Surg 2015;4(1):3-14

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32

K. Fattouch et al. / Interactive CardioVascular and Thoracic Surgery Interactive CardioVascular and Thoracic Surgery 23 (2016) 253–258

Providing faster recovery

- Improved patient satisfaction
- Better cosmetics results
- Requires less rehabilitations resources
- Cost are reduction

MIAVR vs Convencional surgery

Improve postoperative respiratory function due

- Preservation of sternum
- □ Reduction of postoperative pain
- Blood loss and blood transfusions related to the reduction of surgical dissection,
- □ Facilitating reoperation at a later date, as part of pericardium remains closed.

Ministernotomy versus conventional sternotomy for aortic valve replacement: A systematic review and meta-analysis

Morgan L. Brown, MD, Stephen H. McKellar, MD, Thoralf M. Sundt, MD, and Hartzell V. Schaff, MD

Results:

The Journal of Thoracic and Cardiovascular Surgery . March 2009

26 studies 4586 patients with AVR *2054 ministernotomy (MS) *2532 full sternotomy (FS)

There was no difference in mortality (OR 0.71, 95% CI 0.49–1.02). Not found to be significantly different after testing for interaction (P= .8)

Ministernotomy	Weighted mean	95% CI		Randomi	zed studies	
Longer cross clamp	······································			e between		
Longer Bypass times		her major compl			tomy and full	
Shorter ventilation time	2.1 hours	2.95 to 1.30 hours			notomy.	
Less blood loss within 24 hours	79 mL	23 to 136 mL		Rate of conversion from partial		
Shorter Intensive care unit	0.46 days	0.72 to 0.20 days		to conventional sternotomy was 3.0% (95% CI 1.8%–.4%).		
Shorter Hospital stays	0.91 days	1.45 to 0.37 days				

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Minimal Access Aortic Valve Replacement: Is It Worth It?

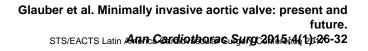
Bari Murtuza, PhD, FRCS, John R. Pepper, FRCS, Rex DeL Stanbridge, FRCS, Catherine Jones, BSc, MBBS, Christopher Rao, MBBS, Ara Darzi, KBE, FRCS, and Thanos Athanasiou, PhD, FETCS

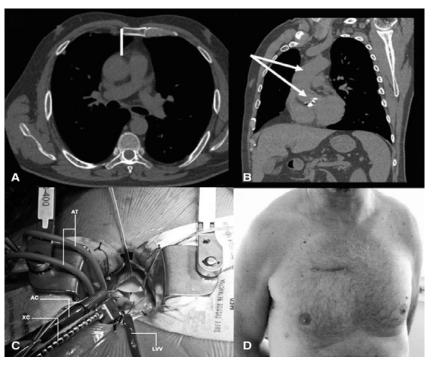
Ann Thorac Surg 2008 Mar;85(3):1121-31.

Meta-analysis of 4,667 patients undergoing any MIAVR approach

Reported benefits in perioperative mortality OR 0.72; 95% CI, 0.51-1.00; p 0.05)

- Intensive care unit stay
- Total hospital stay
- Ventilation time
- Operative times were longer

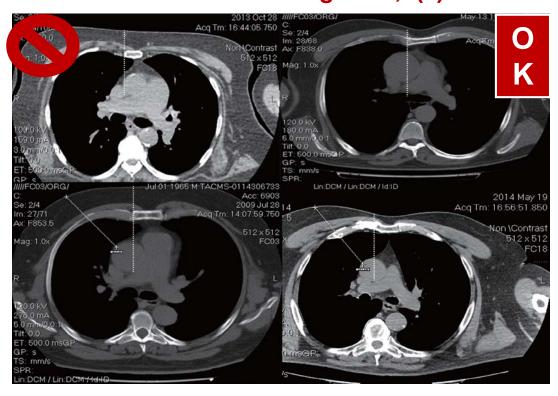

CONCLUSIONS Suggests that MIAVR (MS) is a safe alternative to CAVR


Minimally invasive aortic valve replacement via right anterior minithoracotomy: Early outcomes and midterm follow-up

Mattia Glauber, MD, Antonio Miceli, MD, Stefano Bevilacqua, MD, and Pier A. Farneti, MD, Massa, Italy Journal of Thoracic and Cardiovascular Surgery 2011; 142: 1577 -9

•2011 Reported first experience with MIAVR using the RT

- Excellent surgical results in terms of:
 - Mortality
 - Morbidities
 - Patient satisfaction


Rigth Thoracotomy criteria.

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32

Gilmanov et al. Minimally invasive aortic valve replacement: 12-year single center experience. *Ann Cardiothorac Surg* 2015;4(2):160-169

CT was used for planing in 98% of the patients for RT vs MS

Minimally invasive aortic valve replacement: 12-year single center experience

Daniyar Gilmanov, Marco Solinas, Pier Andrea Farneti, Alfredo Giuseppe Cerillo, Enkel Kallushi, Filippo Santarelli, Mattia Glauber

- MIAVR: MT y MS
- 853 pts.
- 2002-2014

592 –(MT) 261 –(MS)

- 405 (47.5%) Mujeres
- Edad Media 73.8 años

Median follow-up of 29.1 months (2,676.0 patient-years) Survival rates: 1 years were 96%±1% 5 years and 80%±3%

Ann Cardiothorac Surg 2015;4(2):160-169

Overall patients outcomes	
Variable	n= 853
30-day mortality	16 (1.9%)
CPB time (median)	108
Aortic Cross-clamp time (median)	75
Conversion to Full median sternotomy	19 (2.2%)
Re-exploration for bleeding	37 (4.3%)
Perioperative stroke	15 (1.8%)
Transient ischemic attack	11 (1.3%)
New onset atrial fibrillation	243 (28.5%)

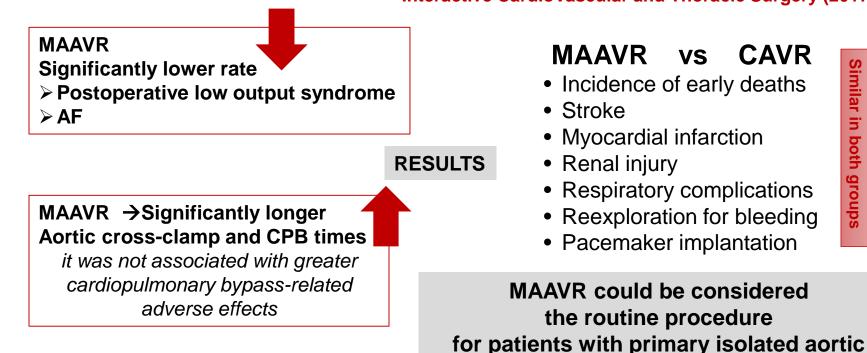
Minimal access versus conventional aortic valve replacement: a meta-analysis of propensity-matched studies[†]

Sharaf-Eldin Shehada^{a,*,†}, Yacine Elhmidi^{b,†}, Fanar Mourad^a, Daniel Wendt^a, Mohamed El Gabry^a, Jaroslav Benedik^a, Matthias Thielmann^a and Heinz Jakob^a

Interactive CardioVascular and Thoracic Surgery (2017) 1–9

CAVR (Full sternotomy)

MAAVR (partial sternotomy and a right minithoracotomy)


*Reduce the invasiveness

*Same quality, safety and results of the conventional approach.

	Table 1: Summary of the total incidences	of the end-points of the meta-ana	alysis	\frown
A total of 4558 patients		MAAVR	CAVR	P-value
9 studies were enrolled;	Primary end-points			
2279 (50%) underwent CAVR	Early mortality, n (%)	34/2279 (1.5)	51/2279 (2.2)	0.14
2279 (50%) underwent	Stroke, n (%)	33/2279 (1.4)	45/2279 (2.0)	0.20
MAAVR	Renal insufficiency, n (%) Myocardial infarction, n (%)	96/2141 (4.5) 7/1653 (0.4)	129/2141 (6.0) 9/1653 (0.5)	0.71 0.65
	Low cardiac output, n (%)	24/1721 (1.4)	40/1721 (2.3)	0.05
Early and late outcomes	Respiratory insufficiency, n (%) Secondary end-points	139/1550 (9.0)	156/1550 (10.1)	0.45
and complications were	Re-exploration for bleeding, n (%) Wound infection	112/2279 (4.9) 3/1108 (0.3)	93/2279 (4.1) 11/1108 (0.9)	0.27 0.1
compared in the	Cross-clamp time (range), mean ± SD	59±14-106±45	54±17-101±39	< 0.0001
selected studies.	CPB time (range), mean ± SD <mark>Atrial fibrillation, <i>n</i> (%)</mark> Permanent pacemaker, <i>n</i> (%)	79±20-151±43 136/1165 (11.7) 43/1300 (3.3)	80±24-130±66 185/1165 (15.9) 53/1300 (4.1)	0.0008 0.01 0.31

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

S.-E. Shehada et al. Minimal access versus conventional aortic valve replacement: a meta-analysis of propensity-matched studies

Interactive CardioVascular and Thoracic Surgery (2017) 1–9

valve diseases.

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Similar

3

both

groups

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32 Criticisms MIAVR

1. Appears to be more related to improved cosmetic results rather than better clinical outcomes

TODAY.... MIAVR has been shown to have equivalent results to the standard FS approach

REDUCED SURGICAL INVASIVENESS WHICH PATIENTS PREFER

2. **Morbidity associated with peripheral cannulation**, which may cause wound infection, pseudoaneurysms and neurological events

Inconsistent data available

Optimal cannulation strategy should be individualized to the specific patient

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32 Criticisms MIAVR

3. Regards the costs related to the minimally invasive surgical instrumentations ----*More expensive---- but,*

✓ Less rate of postoperative complications ✓ Shorter hospital stay

✓ Faster recovery

= less resources in the healthy system and therefore lower costs

Glauber et al. Minimally invasive aortic valve: present and future. Ann Cardiothorac Surg 2015;4(1):26-32 Criticisms MIAVR

4. MIS is not "surgeon friendly' as it is more complex and technically challenging

Diferent learning curve

- Deeper operative field
- Limited working space for the exposure and implantation of the prosthetic valve
- Use of new equipmentand methods

5. MIAVR is associated with longer CPB and cross-clamp time

BEST EVIDENCE TOPIC Is ministernotomy superior to right anterior minithoracotomy in minimally invasive aortic valve replacement?

Damian Balmforth*, Amer Harky, Kulvinder Lall and Rakesh Uppal

Department of Cardiothoracic Surgery, Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London, UK

Interactive CardioVascular and Thoracic Surgery (2017) 1–4

THREE-PART QUESTION In [patients undergoing minimally invasive aortic valve replacement] is [minithoracotomy or ministernotomy] superior in terms of [postoperative outcome]?

** A total of 840 publications were found using the reported search

** 6 represented the best available evidence to answer the clinical question

D. Balmforth et al. / Interactive CardioVascular and Thoracic Surgery (2017) 1-4

Table 1: Best evidence	papers			
Author, date, journal and country Study type (level of evidence)	Patient group	Outcomes	Key results (RT vs MS)	Comments
Miceli <i>et al</i> . (2014), J Thorac Cardiovasc Surg,	406 patients	In-hospital mortality	1.2% vs 1.3% (P=1)	RT associated with less postoperative morbidity but
Italy[2]	RT group: 251	Postoperative AF	19.5% vs 34.2% (P=0.01)	no difference in mortality
Retrospective observational study (level III evidence)	MS group: 155	Ventilation time, median (range)	7 h (5–9) vs 8 h (6–12) (P = 0.003)	
		Intensive care stay, median (range)	1 (1-1) vs 1 (1-2) (P=0.001)	
		Ward stay, median (range)	5 (5-6) vs 6 (5-8) (P=0.001)	

Minimally invasive aortic valve replacement using right minithoracotomy is associated with better outcomes than ministernotomy

Antonio Miceli, MD, PhD, Michele Murzi, MD, Danyiar Gilmanov, MD, Raffaele Fugà, MD, Matteo Ferrarini, MD, Marco Solinas, MD, and Mattia Glauber, MD

Objective: To compare the outcomes of right minithoracotomy (RT) versus ministernotomy (MS) in patients undergoing minimally invasive aortic valve replacement (AVR).

Methods:

From January 2005 to December 2011

J Thorac Cardiovasc Surg 2014;148:133-7

TABLE 3. Outcomes

Variable	RT (n = 251)	MS $(n = 155)$	P value			
Mortality	3 (1.2)	2 (1.3)	1			
Stroke	3 (1.2)	2 (1.3)	1			
Re-exploration for bleeding	12 (4.8)	5 (3.2)	.61			
Blood transfusion	51 (20.3)	40 (25.8)	.24			
New-onset postoperative AF	<mark>49 (19.5)</mark>	53 (34.2)	.01			
Ventilation time (h)	7 (5-9)	8 (6-12)	.003			
ICU stay (d)	1(1-1)	1 (1-2)	.001			
Ward stay (d)	<mark>5 (5-6)</mark>	6 (5-8)	<mark>.0001</mark>			

Data presented as n (%) or median (range). *RT*, Right minithoracotomy; *MS*, ministernotomy; *AF*, atrial fibrillation; *ICU*, intensive care unit.

Miceli et al. J Thorac Cardiovasc Surg 2014;148:133-7

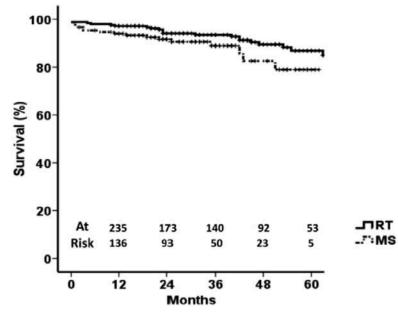


FIGURE 2. Kaplan-Meier curve comparing survival between patients undergoing right thoracotomy (*RT*) versus ministernotomy (*MS*) (log-rank test, P = .1).

No difference was found in terms of:

- cardiopulmonary time,
- crossclamping time,
- postoperative stroke,
- re-exploration for bleeding,
- blood transfusion.

CONCLUSIONS

Minimally invasive AVR is a safe approach associated with low operative mortality and morbidity. However, patients undergoing the RT approach had better outcomes in terms of postoperative AF, ventilation time, and postoperative hospital stay. Prospective randomized trials are required to confirm our data.

D. Balmforth et al. / Interactive CardioVascular and Thoracic Surgery (2017) 1-4

Table 1: Best evidence papers

Author, date, journal and country Study type (level of evidence)	Patient group	Outcomes	Key results (RT vs MS)	Comments
Phan <i>et al.</i> (2015), Ann Cardiothorac Surg, Australia [3] Systematic review	Network meta-analysis of 6516 patients	30-day mortality Direct comparison between RT and CS	OR 0.63, 95% CI 0.18-2.17	On direct meta-analysis, RT but not MS was associated with increased CPB and cross-clamp times when compared with CS
(level 1 evidence)		CPB time	WMD 9.99; 95% CI 3.91–16.07 (P=0.001)	
3,258 → MI	✓ AVR group	Cross-clamp time	WMD 7.64, 95% CI 2.86-12.42 (P=0.002)	
3,258 → CA	VR group.	Direct comparison between MS and CS		
		CPB time	WMD 0.47, 95% CI -7.02 to 7.97 (P = 0.80)	
		Cross-clamp time	WMD 2.09, 95% CI -2.43 to 6.61 (P= 0.37)	

Ministernotomy or minithoracotomy for minimally invasive aortic valve replacement: a Bayesian network meta-analysis

Kevin Phan^{1,2}, Ashleigh Xie¹, Yi-Chin Tsai³, Deborah Black⁴, Marco Di Eusanio^{1,5}, Tristan D. Yan^{1,6}

Ann Cardiothorac Surg 2015;4(1):3-14

Outcome		Pooled OR (95% CI) or WMD (95% CI)			
Outcome	CS vs. MS	CS vs. MT	MS vs. MT		
CPB	-0.30 (-8.64, 7.50)	-9.84 (-22.42, 2.01)	-9.59 (-24.03, 5.47)		
Cross-clamp	-2.25 (-8.40, 3.52)	-7.88 (-15.60, 0.05)	-5.62 (-15.16, 4.40)		
30-day mortality	1.81 (0.85, 4.07)	1.16 (0.43, 3.08)	0.63 (0.18, 2.17)		
Strokes	1.51 (0.69, 3.59)	0.88 (0.34, 2.97)	0.59 (0.17, 2.34)		
Reoperation for bleeding	1.01 (0.65, 1.77)	1.01 (0.52, 2.01)	1.00 (0.41, 2.24)		
Wound infection	1.18 (0.49, 3.45)	2.09 (0.73, 8.37)	1.67 (0.39, 9.20)		

MIAVR, minimally invasive aortic valve replacement; CAVR, conventional aortic valve replacement; OR, odds ratio; WMD, weighted mean difference; CI, confidence interval; CPB, cardiopulmonary bypass; CS, conventional sternotomy; MS, ministernotomy; MT, minithoracotomy.

Phan et al. Network meta-analysis of ministernotomy vs. Minithoracotomy. Ann Cardiothorac Surg 2015;4(1):3-14

MT was associated with significantly longer CPB and cross-clamp durations.

Reasons:

*MT may provide a limited vision of the aortic valve due to greater distance from the thoracic access

*This may reduce maneuverability and increase thedifficulty of using long-shaft instruments

The increased complexity of the MT procedure compared to MS and CS approaches could also explain the longer bypass and crossclamp durations observed Evidence indicates that MT operations may be longer:

Absolute difference: **approximately 10 min CPB **approximately 5 min cross-clamp

which may not be clinically significant

Phan et al. Network meta-analysis of ministernotomy vs. Minithoracotomy. Ann Cardiothorac Surg 2015;4(1):3-14

MT approach requires retrograde arterial perfusion through the femoral artery, which has been associated with increased risk of stroke

Inconsistent data available on femoral versus central cannulation

Optimal cannulation strategy should be individualized to the specific patient

MS which involves a small sternal incision MT avoids incision of the sternum and rib bones, and thus would reduce wound complication rates and chance of infection

Phan et al. Network meta-analysis of ministernotomy vs. Minithoracotomy. Ann Cardiothorac Surg 2015;4(1):3-14

Considerations:

- Complex learning curve
- Evidence of equivalent safety in MS and MT

Best approach: INDIVIDUALIZED ** Patient ** Technical skill **Experience of the heart team involved

D. Balmforth et al. / Interactive CardioVascular and Thoracic Surgery (2017) 1-4

	Table 1: Best evidence	papers			
	Author, date, journal and country Study type (level of evidence)	Patient group	Outcomes	Key results (RT vs MS)	Comments
	Hassan <i>et al.</i> (2015), J Heart Valve Dis, USA [4]	Non-direct comparison 1340 patients	Additional cost per case of RT over CS (based on 200 cases per year)	US\$4194	
	Meta-analysis of non-randomized trials (level 1 evidence)	15 to patients	Additional cost per case of MS over CS (based on 200 cases per year)	US\$290	
	Semsroth et al. (2015),	160 propensity-	90-day mortality	3.8% vs 1.3% (P=0.16)	RT was associated with vascular
/	Ann Thorac Surg, Austria [5] Retrospective	matched pairs of RT and MS	CPB time	137 min (77–456) vs 113 min (66–339) (P < 0.001)	access complications due to the use of peripheral cannulation
	observational study (level III evidence)		Cross-clamp time	93 min (43–231) vs 75 min (42–209) (P < 0.001)	
			Conversion to full sternotomy	12.7% vs 4.5% (P = 0.004)	
			Second cross-clamp	8.4% vs 1.2% (P=0.001)	

D. Balmforth et al. / Interactive CardioVascular and Thoracic Surgery (2017) 1-4

CONCLUSIONS

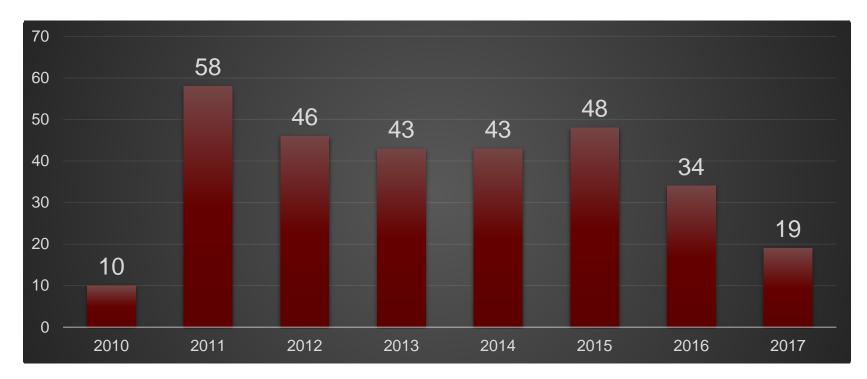
• There is a lack of high-quality evidence comparing RT and MS for minimally invasive AVR, with no randomized controlled trials to date.

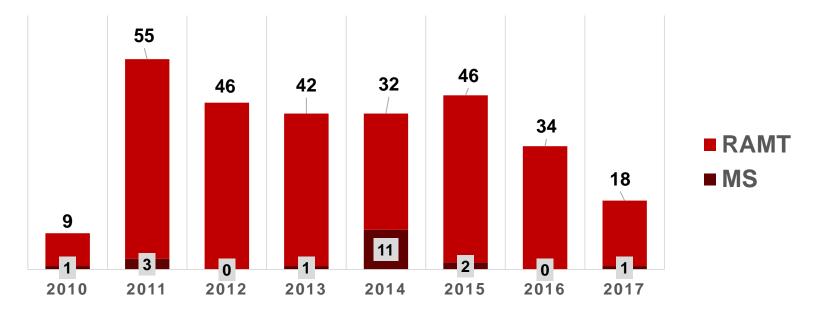
The available evidence shows no difference in early mortality between RT and MS for surgical AVR.

In studies that directly compared RT and MS:

- > RT was found to be associated with reduced length of hospital stay, despite longer cardiopulmonary bypass times and cross-clamp times.
- One study reported groin complications(10.8%) with the RT group, where peripheral cannulation was used, while the other 5 studies did not comment on groin complications associated with peripheral cannulation.

In the only cost-benefit analysis, RT was found to carry considerably more cost than MS over and above conventional AVR.


Right anterior minithoracotomy for aortic valve replacement: 7-year experience of a single center (Clinica CardioVID – Medellín)


Right anterior minithoracotomy for aortic valve replacement: 7-year experience of a single center

- Retrospective descriptive observational study of aortic valve replacement
- From November 2010 to June 2017
- Total of 301 patients Minimally Invasive Aortic Valve Replacement (MIAVR)
 - 282 Right Anterior Minithoracotomy (RAMT)
 - 19 Miniesternotomy superior (MS)

Minimally Invasive Aortic valve replacement (MIAVR): 7-year experience of a single center in Colombia

Aortic Valve Replacement cases perfomed via RAMT over time

RAMT, Right anterior minithoracotomy. MS, Miniesternotomy superior. Year by year (numbers above the bars indicate of the total number of aortic valve replacement operations)

Baseline Preoperative Data

Variable	N = 282
Age (y)	62 y (18-88 y)
Female	107 (37.9%)
Male	175 (62.1%)
Body mass index (kg/m2)	26.2 ± 4.1 26.0 (15-42)

Data are presented as mean \pm SD, median (interquartile range), or n (%), as appropriate, unless otherwise indicated

Variable	N = 282
Obesity ≥ 30 kg/m2	47 (16.6%)
Arterial hypertension	160 (56.7%)
Hypercholesterolemia	107 (37.9%)
Diabetes mellitus type II	42 (14.9%)
Active Smoker	61 (21.6%)
Smoking history	68 (23.4%)
Hypothyroidism	34 (12.1%)
Previous stroke	2 (0.7%)
Extracardiac arterial vascular disease	1 (0.4%)
Previous cardiac arrhythmia	3 (1.1%)
Preoperative atrial fibrillation	11 (3.9%)
Previous pacemaker implantation	4 (1.4%)
Chronic renal failure/Dialysis	5 (1.8%)
Infective endocarditis	12 (4.2%)
Chronic obstructive pulmonary disease	11 (3.9%)
Previous interventional cardiologic procedure	10 (3.5%)
Previous myocardial infarction	1 (0.4%)

Baseline Preoperative Data

Variable	N = 282	Variable	N = 282
Left ventricular ejection fraction (%)	60 (15-75)	Elective Surgery	281 (99.6%)
	× /	Out patient	55 (19.5%)
Left ventricular ejection fraction ≤0.5	63 (22.3%)	In patient	226 (80.1%)
Left ventricular ejection fraction ≤ 0.3	18 (6.4%)	Urgent o Emergency	1 (0.4%)

Variable	N = 282
Aortic valve pathology	
Stenosis	173 (61.3%)
Mixed lesion	50 (17.7%)
Regurgitation	59 (20.9%)
Bicuspid aortic valve	110 (39.0%)
Severe pulmonary hypertension	10 (3.5%)

Data are presented as mean ± SD, median (interquartile range), or n (%), as appropriate, unless otherwise indicated

INTRAOPERATIVE DATA.

AORTIC VALVE REPLACEMENT

Variable	(n=282)
Associated procedures	29 (10.3%)
* Mitral valve procedure	16/29 (55.2)
Repair	2/16 (12.5)
Replacement	14/16 (87.5)
* Tricuspid valve procedure (Repair)	2/29 (6.9)
* Atrial fibrillation ablation	2/29 (6.9)
* Others	13/29 (44.8)
Aortic subvalvular membrane resection	1/13
Venticular septal defect repair	1/13
Left atrial appendage closure	2/13
Aortic annulus reconstruction (Nick Procedure)	9/13

Values are n (%), unless otherwise indicated

INTRAOPERATIVE DATA.

Implanted prosthesis size (mm)	n=282
19	60 (21.3%)
21	70 (24.8%)
23	76 (26.9%)
25	54 (19.1%)
27	19 (6.7%)
29	3 (1.1%)
Median (interquartile range) of implanted prosthesis size (mm)	23 (19-29)

Values are n (%), unless otherwise indicated

Prosthesis	n=282	
Bioprosthesis	263 (93.3)	
Mechanical	19 (6.7)	

Cannulation

*AV Femoral 282 (100%) *Internal yugular vein 16 (5.7%) * TEE guidance

Cardioplegic Solution	N=282
Blood Cardioplegia	32 (11.3)
Plegisol	10 (3.5)
НТК	131 (46.4)
DEL NIDO (Today)	109 (38.6)

OPERATIVE TIMES.

Variable	Overall population MIAVR (n=301)	RAMT (n=282)	MS (n=19)
ACC time (min)			
Mean ± SD	87.1 ± 27.4	87.7 ± 27.6	78.9 ± 22.5
Median (interquartile range)	82 (38-204)	82 (38 -204)	71 (51-139)
CPB time (min)			
Mean ± SD	122.4 ± 41.7	123.5 ± 42.3	107.1 ± 28.8
Median (interquartile range)	115 (61-374)	116 (61-374)	101 (73 -197)

Data are presented as mean ± SD, median (interquartile range)

CPB, cardiopulmonary bypass; ACC, aortic cross clamp.

OVERALL PATIENT OUTCOMES.

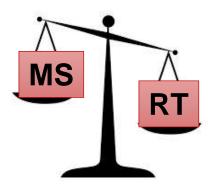
Variable	Overall population MIAVR (n=301)	RAMT (n=282)	MS (n=19)
ICU length of stay (d)	2 (0-59)	2 (0-59)	2 (1-7)
Assisted ventilation time (h)			
<24 h	258 (85.7%)	242 (85.8%)	16 (84.2%)
24-48 h	22 (7.3%)	21 (7.45%)	2 (10.5%)
>48 h	21 (6.9%)	19 (6.74%)	1 (5.3%)
Hospital length of stay (d)	7 (2-65)	7 (2-65)	7 (3-13)
Early mortality *	11 (3.65%)	11(3.90%)	0

Values are n (%), or median (range), unless otherwise indicated. ICU, Intensive care unit

* Early mortality was defined as in-hospital mortality and all deaths within 30 days of operation irrespective of where the death occurred.

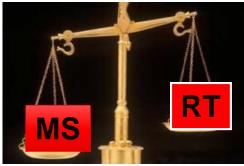
OVERALL PATIENT OUTCOMES(1)

Variable	RAMT (n=282)	MS (n=19)
Reopening for bleeding or cardiac tamponade	23 (8.2%)	3 (15.8%)
Perioperative acute myocardial infarction	2 (0.7)	0
Infective complications 9/282 (3.2%)		
Sepsis	1 (0.4)	0
Superficial infection of thoracotomy	3 (1.1)	0
Deep infection of thoracotomy	3 (1.1)	0
Superficial Infection of the groin	2 (0.7)	0
Stroke *with sequels	2 (0.7)	0
*without sequels	4 (1.4)	0
Convulsions	3 (1.1)	0
Pulmonary complications/respiratory dysfunction	4 (1.4)	0
Pneumonia	4 (1.4)	0
Hemothorax	5 (1.8)	1/19
Pleural effusion requiring puncture	6 (2.1)	1/19


Values are n (%), unless otherwise indicated. ICU, Intensive care unit

OVERALL PATIENT OUTCOMES(2)

Variable	RAMT (n=282)	MS (n=19)
Perioperative acute kidney injury	1 (0.4%)	0
New-onset CVVH/hemofiltration support	3 (1.1%)	0
Complete AV block; requested PM implant	5 (1.8%)	0
New-onset atrial fibrillation or flutter	36 (12.8%)	0
Gastrointestinal complications 2/282		
Esophageal perforation	1 (0.4%)	0
Hepatic Hematoma	1 (0.4%)	0


Values are n (%), unless otherwise indicated. ICU, Intensive care unit

QUESTION IS NOT WHO IS SUPERIOR?

Best approach: INDIVIDUALIZED ** Patient ** Technical skill

**Experience of the heart team involved

STS/EACTS Latin America Cardiovascular Surgery Conference September 21-22, 2017 | Cartagena, Colombia

info@cardiovascularsurgeryconference.org www.CardiovascularSurgeryConference.org

Thank You

