Evaluation of a Novel Cerebral Oximeter for Congenital Heart Disease

Renee Nierman Kreeger, MD
Assistant Professor, Anesthesia and Pediatrics
Cincinnati Children’s Hospital Medical Center
Lucile Packard Children’s Hospital
Children’s Hospital of Philadelphia
Duke University Medical Center

Disclosures

• Research support from Nonin Medical, Inc.
Introduction

• Neurologic sequelae following congenital heart surgery are not uncommon
 – Stroke rate 5.4 in 1000 patients
 – Seizures reported in 2.3% of patients
• Neurodevelopmental issues not apparent until later in life
• Cerebral hypoxia-ischemia identified as a contributor
• Potential for early intervention if recognized

Near infrared spectroscopy (NIRS)
What Does NIRS Measure?

- O₂ Supply
 - CBF
 - SaO₂
 - Hct
 - P₅₀

- O₂ Demand
 - CMRO₂

How Does NIRS Work?

- Spectrophotometer
 - oxy & deoxy hemoglobin (SO₂)
 - Log (I/I₀) = SO₂

- Probe
 - sits on head
 - scalp, skull, brain

Light Source (I₀)

Detector (I)
NIRS Summary

- Similar to pulse oximetry
 - Measures hemoglobin saturation with light
 - Non-invasive, continuous, bedside

- Different from pulse oximetry
 - Gas exchanging vessels (capillaries, venules, arterioles)
 - Tissue oxygen supply/demand
 - 1000 fold greater signal
 - Monitors for tissue hypoxia-ischemia

Study Aim

- Calibrate and validate an advanced technology NIRS device to measure cerebral tissue oxygen saturation in children with cardiovascular disease
Patient Population

- Inclusion criteria
 - Neonates, infants and children
 - Weight < 40 kg
 - Cardiovascular disease
 - Various oxygen saturations
 - Undergoing cardiac catheterization

- Exclusion criteria:
 - Adhesive allergy or skin condition
 - Craniofacial disease
 - Hemoglobinopathy
 - Cerebrovascular disease/acute neurologic injury
 - Life threatening condition

Measurements

- NIRS
 - rScO₂

- Co-oximetry
 - Arterial and jugular bulb venous saturation
 - Total hemoglobin concentration and hematocrit
 - Blood gas (pH, pCO₂, pO₂, SaO₂)
 - Carboxyhemoglobin and methemoglobin

- Chemistry
 - Serum bilirubin
Study Design

• 2 phases:
 – Calibration
 • Calibrate a NIRS regional cerebral saturation (rScO₂) to weighted average cerebral saturation
 • SavO₂=0.7 SjO₂+0.3 SaO₂
 – Validation
 • Compare arterial and jugular venous blood samples to calculate SavO₂ with NIRS rScO₂ from algorithm
Protocol

• Bilateral cerebral sensors placed after induction of anesthesia
• Arterial and venous catheters placed by cardiologist
• Arterial and jugular bulb venous samples drawn at beginning of catheterization
• Simultaneous recording of cerebral oximetry during blood draws

Statistics

• Accuracy of device determined through A_{rms} statistic
 – Estimates agreement between a test device and an accepted reference device
• Device considered accurate if A_{rms} less than 6%
• Bland-Altman analysis performed to determine limits of agreement
Results

- 100 enrolled patients
- 86 included in analysis
- 89% of patients ASA 3 or 4
- 62% of patients with cyanotic cardiac defects
- 59% neonates and infants
- 79% Caucasian

Results continued

- Room air pulse oximetry
 - <80% in 16.5%
 - <90% in 24.7%
- Arterial pCO\textsubscript{2} 28-61 mmHg
- Hemoglobin 8-23 g/dL
- SaO\textsubscript{2}: 34-100%
- rScO\textsubscript{2}: 34-91%
- SavO\textsubscript{2}: 26-91%
- Bilirubin 0.2-6.2 mg/ml
- No appreciable methemoglobin or carboxyhemoglobin
Absolute rScO₂ accuracy

Ipsilateral
- A_{rms} 5.3%
- Mean bias 0 ± 5.3
- Precision 5.3%

Contralateral
- A_{rms} 5.5%
- Mean bias 1.1 ± 5.3
- Precision 5.42%

No statistically significant difference between adhesive and non-adhesive sensors.

No effect from bilirubin and total hemoglobin.

Figure 2: rScO₂ versus SavO₂

- Slope = 0.85
- Intercept = 11
- $R = 0.88$
Summary

- Device accurately measures rScO₂
 - Absolute
 - Precision 5%
 - Ages 4 days to 11 years
 - Light and dark complexions
 - Arterial oxygen saturation range of 34-100%
 - Hgb 8-23 g/dL
Advantages of device

- Dual emitter/dual detector:
 - Measures absolute cerebral oxygen saturation
 - Uses one common sensor
 - Accurate over wide range of ages and cerebral oxygen saturations
- Dynamic compensation:
 - 4 wavelength construct better accounts for variation in light scattering in age, brain development and cerebral vasodilation

Limitations of device

- Error from arterial to venous ratio not constant among patients
 - Ratio of arterial to venous 30:70 utilized
 - Studies show a range for the ratio
- Not thoroughly tested under extreme conditions
 - Only 2 patients with rScO2 <45%
Intervention thresholds for rScO₂

- **Luxury**: 100%
- **Normal**: 80%
- **Disturbed**:
 - 60%
 - 45%
 - 30%
 - 0%

- **Damage**:
 - ATP
 - EEG flat
 - Lactate
 - Δ EEG

Discussion

- Cerebral hypoxia-ischemia is a perioperative issue for children with cardiovascular disease
- Neurodevelopmental issues not detected until later in life
- Significant health care cost
- Need real time detection of hypoxia-ischemia in order to intervene before injury occurs