
The STS Surgeon Composite

Technical Appendix

Overview

Surgeon-specific risk-adjusted operative operative mortality and major com-
plication rates were estimated using a bivariate random-effects logistic re-
gression model. The term bivariate refers to the fact that both operative
mortality and major complications were analyzed together in a single model,
not estimated one at a time in separate models. Random-effects refers to the
assumption that the provider-specific parameters of interest are assumed to
arise from a specified distribution defined by parameters that are also esti-
mated in the modelling process. To adjust for case mix, we first calculated
each patient’s risk score for operative mortality and each patient’s risk score
for major complications using an existing set of STS risk models. The goal
of calculating a patient risk score was to reduce the number of covariates
in the hierarchical model by summarizing the predictive information from a
large number of baseline covariates into a single number. Adjustment for each
covariate individually in the hierarchical model would be theoretically prefer-
able but computationally impractical due to the large number of records and
covariates, and the computationally intensive nature of Bayesian hierarchical
model estimation.

Calculation of Risk Scores

For each patient, risk scores for operative mortality and major complications
were calculated from existing models that were specific to the individual
patient’s type of operation.

• For patients undergoing isolated CABG, isolated AVR, or isolated AVR
+ CABG, risk scores were calculated according to the published STS
2008 mortality and major complications models for isolated CABG,
isolated valve, or isolated valve + CABG, respectively. To ensure high
calibration for the current study cohort, coefficients of each model were
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re-estimated using the current 3-year study sample and current end-
point definitions.

• For patients undergoing a mitral operation without CABG, risk scores
were calculated using a modified version of the published STS 2008
mortality and major complications models for isolated valve proce-
dures. The STS 2008 models were modified to account for the in-
clusion of patients undergoing tricuspid repair and to provide a more
detailed adjustment for endocarditis and degree of tricuspid regurgita-
tion. Briefly, the modified models included a new variables for tricuspid
repair (yes/no), a new variable for treated endocarditis (yes/no), and a
more detailed adjustment for degree of tricuspid (less than moderate,
moderate, severe). Coefficients of the modified models were estimated
using the current 3-year study cohort and current endpoint definitions.

• For patients undergoing a mitral operation with concomitant CABG,
risk scores were calculated using a modified version of the published
STS 2008 mortality and major complications models for isolated valve
+ CABG operations. Modifications to these isolated valve + CABG
models were identical to the modifications of the isolated valve models
described above. Coefficients of the modified models were estimated
using the current 3-year study cohort and current endpoint definitions.

A patient’s mortality risk score was defined as the patient’s predicted risk of
operative mortality and a patient’s major complication risk score was defined
as the patient’s predicted risk of major complication.

Hierarchical Model

For the i-th of nj patients treated by the j-th surgeon (j = 1, 2, . . . , N),
let p1ji be patient’s predicted risk of operative mortality (i.e. mortality risk
score), let p2ji be the patient’s predicted risk of major complications (i.e.
complications risk score), let p̄1j =

∑nj

i=1 p1ij/nj be the average mortality
risk score for surgeon j, and let p2j =

∑nj

i=1 p2ij/nj be the average compli-
cations risk score for surgeon j. Let Y1ji be a binary indicator of operative
mortality status (0=alive, 1=dead), let Y2ji be an indicator of major com-
plications (0 = none, 1 = at least one), and let πkji = Pr(Ykji = 1|pkji) be
the probability of the occurrence of the k-th endpoint where k = 1 refers
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to mortality and k = 2 refers to complications. The associations of p1ji and
p2ji with Ykji and Y2ji were assumed to be described by a bivariate random
effects logistic regression model with normally distributed surgeon-specific
random intercept parameters. At the first level, we specified the following
within-surgeon regression model:

(operative mortality) log
(

π1ji

1−π1ji

)
= α1j + x1jiβ1

(major complication) log
(

π2ji

1−π2ji

)
= α2j + x2jiβ2

where xkji = log(pkji/(1 − pkji)), β1 is an unknown parameter relating risk
scores to mortality, β2 is an unknown parameter relating risk scores to ma-
jor complications, and α1j and α2j are surgeon-specific intercept parameters
(random effects). Conditional on π1ji and π2ji, the variables Y1ji and Y2ji

were assumed to be distributed as two independent Bernoulli variables with
parameters π1ji and π2ji, respectively. That is:

Pr(Y1ji = y1ji, Y2ji = y2ji|π1ji, π2ji) =
2∏

k=1

π
ykji
kji (1− πkji)

1−ykji .

Outcomes of patients of different surgeons were assumed to be statistically
independent, and outcomes of patients treated by the same surgeon were
assumed to be conditionally independent given (α1j, α2j). The assumption
that Y1ji and Y2ji are conditionally independent given π1ji and π2ji is likely
to be violated in practice but was made in order to facilitate computation.
Although the model assumes conditional independence between Y1ji and Y2ji,
the model does not assume marginal independence between these two vari-
ables, as the underlying probabilities π1ji and π2ji depend on random effects
parameters α1j and α2j which are assumed to be correlated, as described
below.

At the second level, we specified the following between-surgeon model:[
α1j

α2j

]
ind∼ N

([
γ10 + γ11x

∗
1j

γ20 + γ21x
∗
2j

]
,

[
σ11 σ12

σ12 σ22

])
where x∗

kj = log(p̄kj/(1 − p̄kj)), and where γ10, γ11, γ20, γ21, σ11, σ12, and
σ22 are unknown parameters to be estimated from the data. In other words
α1j and α2j were assumed to be independent draws from a bivariate normal
distribution with a mean depending on the surgeon’s average case mix, as
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reflected in x∗
1j and x∗

2j. The assumption that pairs (α1j, α2j) are independent
is somewhat artificial as we believe that outcomes of surgeons operating at
the same hospital may be correlated. Implicitly, we assume that a hospital’s
effect on outcomes is captured in the surgeon-level parameters (α1j, α2j).

Accounting for x∗
1j and x∗

2j in the surgeon-level model is intended to reduce
confounding in the estimation of β1 and β2 in the patient-level model. As
noted by various authors (e.g. Neuhaus and Kalbfleisch, Biometrics, 1998;
Localio et al. Ann Intern Med, 2001; Neuhaus and McCulloch, JRSS-B,
2006), inclusion of only individual-level covariates in a hierarchical model
can produce biased estimates when covariates and random effects are cor-
related. Inclusion of both individual-level covariates such as x1ji and x2ji

and surgeon-level covariates such as x∗
1j and x∗

2j allows partitioning covari-
ate effects into within-surgeon and between-surgeon components in order to
produce consistent estimates of the within-surgeon model parameters β1 and
β2. In addition, inclusion of cluster-level covariates in hierarchical models
can potentially enhance the precision in the estimation of the cluster-specific
parameters, which in our case are α1j and α2j.

Definition of Risk-Adjusted Rates

Based on this model, the j-th surgeon’s risk-adjusted rates of operative mor-
tality and major complications were defined as

(operative mortality) θ1j =

∑nj

i=1 expit(α1j + x1jiβ1)∑nj

i=1 expit(constant1 + x1jiβ1)
× Y 1

(major complication) θ2j =

∑nj

i=1 expit(α2j + x2jiβ2)∑nj

i=1 expit(constant2 + x2jiβ2)
× Y 2

where Y 1 denotes the overall aggregate observed rate of operative mortality
in the study sample, Y 2 denotes the overall aggregate observed rate of major
complication in the study sample, and constant1 and constant2 are chosen to
represent “typical” values of α1j and α2j, respectively.

Definition of Composite Score

The overall composite score of the j-th surgeon was defined as

θj = w(1− θ1j) + (1− w)(1− θ2j)
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where w = (1/σ1)/(1/σ1 + 1/σ2) and σk denotes the standard deviation of
the θkj’s across surgeons, k = 1, 2.

Estimation

Model parameters were estimated in a Bayesian framework by specifying
a prior probability distribution for the unknown model parameters β1, β2,
γ10, γ11, γ20, γ21, σ11, σ12, σ22. Because our prior knowledge was limited,
we specified a vague proper prior distribution that consisted of independent
normal distributions for regression coefficients (β1, β2, γ10, γ11, γ20, γ21), and
an inverse Wishart distribution for variance parameters, Σ = (σ11, σ12, σ22).
Posterior means and credible intervals were calculated using Markov Chain
Monte Carlo (MCMC) simulations as implemented in OpenBUGS version
3.2.2 software. Posterior summaries were calculated by generating 20,000
sets of simulated parameter values after a burn-in period of 1,000 MCMC it-
erations to ensure convergence. Adequacy of the number of MCMC iterations
was assessed by the methods of Raftery and Lewis (1992) and Geweke (1991)
as implemented in the CODA add-on package for R statistical software. The

parameter θj was estimated as θ̂j =
∑20000

l=1 θ
(l)
j

/
20000, where θ

(l)
j denotes

the simulated values of θj at the l-th iteration of the MCMC procedure. A
98% Bayesian credible interval was obtained by calculating the 200th lowest
and 200th highest values of θj across the 20,000 simulated values.

Estimation of Reliability

Reliability is conventionally defined as the proportion of variation in a mea-
sure that is due to true between-unit differences (i.e., signal) as opposed to
random statistical fluctuations (i.e., noise). Equivalently, it is the squared
correlation between a measurement and the true value. Accordingly, relia-
bility was defined as the square of the Pearson correlation coefficient (ρ2)
between the set of surgeon-specific estimates θ̂1, . . . , θ̂N and the correspond-
ing unknown true values θ1, . . . , θN , that is:

ρ2 =

∑N
j=1(θ̂j −

1
N

∑N
h=1 θ̂h)(θj −

1
N

∑N
h=1 θh)∑N

j=1(θ̂j −
1
N

∑N
h=1 θ̂h)

2
∑N

j=1(θj −
1
N

∑N
h=1 θh)

2
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The quantity ρ2 was estimated by its posterior mean, namely,

ρ̂2 =
1

20000

20000∑
l=1

ρ2(l)

where

ρ2(l) =

∑N
j=1(θ̂j −

1
N

∑N
h=1 θ̂h)(θ

(l)
j − 1

N

∑N
h=1 θ

(l)
h )∑N

j=1(θ̂j −
1
N

∑N
h=1 θ̂h)

2
∑N

j=1(θ
(l)
j − 1

N

∑N
h=1 θ

(l)
h )2

with θ
(l)
h denoting the value of θj on the l-th MCMC sample θ̂j =

∑20000
l=1 θ

(l)
j /20000

denoting the posterior mean of θj. A 95% credible interval for ρ2 was ob-
tained by calculating the 500th smallest and 500th largest values of ρ2(l) across
the 20,000 MCMC samples.
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