Thymus/Thymoma Tracheal Resection

Malcolm M. DeCamp, MD

Chair, Division of Cardiothoracic Surgery
K. Craig Kent Chair in Strategic Leadership
Professor of Surgery and Medicine
University of Wisconsin School of Medicine and Public Health
Disclosures

• None
Thymectomy

Myasthenia Gravis
Thymoma
Thymectomy

Myastenia Gravis
- 40,000 – 60,000 pts annually
- Autoimmune etiology
- ~ 20% have a thymoma

Thymoma
- #1 primary mediastinal malignancy
- 400 patients annually in US
- 33% have some autoimmune disorder
 - Myasthenia gravis most common
Randomized Trial of Thymectomy in Myasthenia Gravis

ABSTRACT

BACKGROUND

Thymectomy has been a mainstay in the treatment of myasthenia gravis, but there is no conclusive evidence of its benefit. We conducted a multicenter, randomized trial comparing thymectomy plus prednisone with prednisone alone.

METHODS

We compared extended transsternal thymectomy plus alternate-day prednisone with alternate-day prednisone alone. Patients 18 to 65 years of age who had generalized neurethromonous myasthenia gravis with a disease duration of less than 5 years were included if they had Myasthenia Gravis Foundation of America clinical class II to IV disease (on a scale from I to V, with higher classes indicating more severe disease) and elevated circulating concentrations of acetylcholine-receptor antibody. The primary outcomes were the time-weighted average Quantitative Myasthenia Gravis score (on a scale from 0 to 39, with higher scores indicating more severe disease) over a 3-year period, as assessed by means of blinded rating, and the time-weighted average required dose of prednisone over a 3-year period.

RESULTS

A total of 126 patients underwent randomization between 2006 and 2012 at 36 sites. Patients who underwent thymectomy had a lower time-weighted average Quantitative Myasthenia Gravis score over a 3-year period than those who received prednisone alone (0.15 vs. 8.05; P<0.001). Patients in the thymectomy group also had a lower average required for alternate-day prednisone (44 mg vs. 60 mg, P=0.001). Fewer patients in the thymectomy group than in the prednisone-only group required immunosuppression with azathioprine (17% vs. 48%; P=0.001) or were hospitalized for exacerbations (6% vs. 37%; P=0.001). The number of patients with treatment-associated complications did not differ significantly between groups (P=0.78), but patients in the thymectomy group had fewer treatment-associated symptoms related to immunosuppressive medications (P=0.001) and lower distress levels related to symptoms (P=0.003).

CONCLUSIONS

Thymectomy improved clinical outcomes over a 3-year period in patients with neurethromonous myasthenia gravis. (Funded by the National Institute of Neurological Disorders and Stroke and others; MGTX ClinicalTrials.gov number, NCT00294696.)
Benefit of Thymectomy

MGTX Trial, NEJM 2016
Thymectomy for Myasthenia: Unanswered Questions

- What ages to offer resection
- What stage of disease
- Optimal preop preparation
- Sternotomy vs MIS
 - Transcervical
 - VATS (right vs left)
 - Robotic (right vs left)

Perioperative risk
- Myasthenic crisis
- Phrenic nerve injury
Thymoma
Surgical-Pathologic Staging: Masaoka

Remains within the capsule of the thymus

Stage I
Stage II

Extends through the thymic capsule into the fat or pleura.

IIa microscopic
IIb macroscopic*
Stage III

Macroscopic invasion of neighboring organs.

In this case Ascending aorta, SVC and perhaps LUL
Stage IVa

Pleural and/or pericardial dissemination
Histologic Grade: WHO

<table>
<thead>
<tr>
<th>WHO Type</th>
<th>Histologic Description</th>
<th>Incidence<sup>a</sup> (%)</th>
<th>10-Year Survival<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Medullary thymoma</td>
<td>9</td>
<td>97</td>
</tr>
<tr>
<td>AB</td>
<td>Mixed thymoma</td>
<td>24</td>
<td>95</td>
</tr>
<tr>
<td>B1</td>
<td>Predominantly cortical thymoma</td>
<td>13</td>
<td>92</td>
</tr>
<tr>
<td>B2</td>
<td>Cortical thymoma</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td>B3</td>
<td>Well-differentiated thymic carcinoma*</td>
<td>15</td>
<td>62</td>
</tr>
<tr>
<td>C</td>
<td>Thymic carcinoma*</td>
<td>15</td>
<td>29</td>
</tr>
</tbody>
</table>

^a The incidence of histologic classes of thymoma were reported in 11 retrospective...
Thymectomy for Thymoma: Unanswered Questions

- Surgical planning
 - Approach Open vs MIS (conversions)
- What can “go”
 - Pericardium, Lung, Phrenic nerve
 - SVC and/or innominate vein
 - Venous reconstruction?
- Pathology
 - Completeness of resection
 - Masaoka Stage
 - WHO Grade
- Adjuvant radiation therapy
- Complications (phrenic nerve)
Tracheal Resection
Case Report: 37 yo woman presents with stridor. Prior history of 2 week intubation after an opiate overdose 3 months ago.
Cautery Incision of the Stricture
Balloon Bronchoplasty
Tracheal Resections STS Thoracic Database

Total Volume Per Year

Indication

N by Indication

- Malignant
- Benign

75%
Approach

N by Approach

- Thoracic
- Cervical

81%
Mortality, LOS, Readmission

<table>
<thead>
<tr>
<th>Surgical Approach</th>
<th>Surgical Indication</th>
<th>Mortality</th>
<th>Length of Stay (Days)</th>
<th>30-day Readmission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td>P-value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Mortality**: 15 (1.1%), 5 (1.6%), 0.77, 14 (1.1%), 6 (1.5%), 0.10
- **Length of Stay (Days)**: 10.3 +/- 14.1, 10.6 +/- 12.8, 0.80, 10.9 +/- 15.1, 8.9 +/- 8.7, 0.014
- **30-day Readmission Rate**: 65 (5%), 40 (13%), 0.001, 84 (7%), 21 (5%), 0.20

Morbidity by Approach

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cervical N=1295</th>
<th>Thoracic N= 309</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Complication</td>
<td>249 (19.2%)</td>
<td>93 (30.1%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>31 (2.4%)</td>
<td>22 (7.1%)</td>
<td>0.001</td>
</tr>
<tr>
<td>ARDS</td>
<td>4 (0.3%)</td>
<td>5 (1.6%)</td>
<td>0.016</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>30 (2.3%)</td>
<td>22 (7.1%)</td>
<td>0.001</td>
</tr>
<tr>
<td>DVT</td>
<td>5 (0.4%)</td>
<td>8 (2.6%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Empyema</td>
<td>0 (0%)</td>
<td>2 (0.6%)</td>
<td>0.037</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>4 (0.3%)</td>
<td>4 (1.3%)</td>
<td>0.049</td>
</tr>
<tr>
<td>Return to OR</td>
<td>67 (5.2%)</td>
<td>25 (8.1%)</td>
<td>0.056</td>
</tr>
<tr>
<td>Ventilator > 48 hrs</td>
<td>32 (2.5%)</td>
<td>12 (3.9%)</td>
<td>0.18</td>
</tr>
<tr>
<td>PE</td>
<td>1 (0%)</td>
<td>2 (0.6%)</td>
<td>0.097</td>
</tr>
<tr>
<td>Reintubation</td>
<td>47 (3.6%)</td>
<td>16 (5.2%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>41 (3.2%)</td>
<td>5 (1.6%)</td>
<td>0.18</td>
</tr>
<tr>
<td>UTI</td>
<td>22 (1.7%)</td>
<td>9 (2.9%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Recurrent Nerve Injury</td>
<td>12 (0.9%)</td>
<td>5 (1.6%)</td>
<td>0.35</td>
</tr>
<tr>
<td>Anastomotic Complication</td>
<td>3 (0.2%)</td>
<td>3 (1%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Wound Infection</td>
<td>60 (4.6%)</td>
<td>15 (4.9%)</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Predictors of Morbidity and Mortality

Table 3. Summary of Multivariable Logistic Regression Model for Morbidity or Mortality Composite Endpoint

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio (OR)</th>
<th>OR 95% Confidence Interval (CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zubrod Score: 2, 3, 4 or 5 vs 0 or 1</td>
<td>2.44</td>
<td>1.61 3.69</td>
<td><0.001</td>
</tr>
<tr>
<td>Approach: Thoracic vs. Cervical</td>
<td>1.65</td>
<td>1.12 2.43</td>
<td>0.011</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.54</td>
<td>1.04 2.26</td>
<td>0.030</td>
</tr>
<tr>
<td>ASA Class: III, IV or V vs I or II</td>
<td>1.50</td>
<td>0.95 2.38</td>
<td>0.083</td>
</tr>
<tr>
<td>CAD</td>
<td>1.52</td>
<td>0.95 2.41</td>
<td>0.081</td>
</tr>
<tr>
<td>Obesity: BMI > 30 kg/m² vs BMI ≤ 30 kg/m²</td>
<td>1.33</td>
<td>0.94 1.87</td>
<td>0.11</td>
</tr>
<tr>
<td>Most Recent Creatinine Level</td>
<td>0.81</td>
<td>0.63 1.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Pulmonary Hypertension</td>
<td>2.87</td>
<td>0.75 10.99</td>
<td>0.12</td>
</tr>
<tr>
<td>Gender: Male vs. Female</td>
<td>1.29</td>
<td>0.92 1.82</td>
<td>0.14</td>
</tr>
<tr>
<td>Indication: Malignant vs. Benign</td>
<td>1.19</td>
<td>0.78 1.80</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Volume-Outcome Relationship

<table>
<thead>
<tr>
<th></th>
<th>Volume Per Year ≥ 4 N=9</th>
<th>Volume per Year < 4 N= 98</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volume</td>
<td>540</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>30-day Mortality</td>
<td>7</td>
<td>8</td>
<td>0.80</td>
</tr>
<tr>
<td>Total Morbidity</td>
<td>93</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Total Composite endpoint</td>
<td>94</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Composite Endpoint Incidence</td>
<td>17.4%</td>
<td>27.4%</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Summary

In STS reporting centers:

- Tracheal resection is performed with low mortality
- Morbidity higher than expected
- Volume is highly concentrated in few centers
- There is likely a volume-outcome relationship
- Expand the database to capture relevant variables
 - Preoperative interventions
 - Resection length
 - Release maneuvers
 - Airway complications
Post-intubation stenosis

Grillo et al, *JTCVS* 1995

- N = 503
- Era 1965-1992
- Length 1-7.5 cm (mean 3.3 cm)
- Follow-up > 3 years
Approach

- Cervical: 69%
- Partial Sternotomy: 29%
- Thoracotomy: 2%
Anastomotic Level

- Trachea: 64%
- Cricoid: 23%
- Thyroid: 12%
Results by Level

<table>
<thead>
<tr>
<th>Failure Risk</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>324</td>
<td>117</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>2.2%</td>
<td>6%</td>
<td>8.1%</td>
</tr>
</tbody>
</table>
Predictors of Failure

• **Preoperative**
 • Previous tracheostomy
 • Previous repair
 • TEF
 • Extensive malacia

• **Intraoperative**
 • Higher anastomosis
 • Need for release maneuver

• **Postoperative**
 • Reintubation
Tracheal Resection: Unanswered Questions

1. Tracheal Resection

Pre-Operative
- Current Airways: □ Native □ Oral ETT □ Trach □ T-Tube
- Prior tracheotomy: □ Yes □ No
- Prior intubation: □ Yes □ No
- Prior Tracheal Resection: □ Yes □ No

Recent Bronchoscopic Intervention (within 6 weeks): □ Yes □ No (includes: core out, dilation, ablation, stent)

Recurrent nerves intact: □ Yes □ No □ Unknown

If not intact: Which nerve? □ Right □ Left □ Both

Airway management during resection (check all that apply):
- Cricoid - table ventilation: □ Yes □ No
- VA ECMO: □ Yes □ No
- Cardiopulmonary bypass: □ Yes □ No

Incision (check all that apply, must have at least one indicated):
- Cervical □ Yes □ No
- Partial sternotomy □ Yes □ No
- Full sternotomy □ Yes □ No
- Right thoracotomy □ Yes □ No
- Camshell □ Yes □ No

Length of tracheal resection:_mm (Surgical or pathologic measurement acceptable)

Cricoid resection required: □ Yes □ No

Carinal resection required: □ Yes □ No

Release Maneuvers: □ Yes □ No

If yes: □ Suprahyoid □ Suprahyoid □ Hilar

Additional Post-Operative Events
- Anastomotic dehiscence requiring drainage, revision, stent, tracheostomy, T-tube □ Yes □ No
- Anastomotic stricture requiring intervention □ Yes □ No
- Airway obstruction requiring intervention (e.g., unscheduled bronchoscopy) □ Yes □ No
- Recurrent nerve palsy: □ Yes □ No

Additional Post-Operative Events
- Did the patient leave the hospital with tracheal appliance? (tracheostomy, T-tube or stent) □ Yes □ No □ Patient Died in Hospital

At 30 Days Post-Operative Patient is:
- Short/Tube free □ Yes □ No □ Patient Died Within 30 Days of Procedure

At 90 Days Post-Operative Patient is:
- Short/Tube free □ Yes □ No □ Patient Died Within 90 Days of Procedure

- Preoperative evaluation and preparation
- Key intraoperative variables
- Specific airway complications
Thank you

decamp@surgery.wisc.edu