Key Papers of 2024

Linda W Martin, MD, MPH University of Virginia

March 6, 2025

Folder with all slides, papers

@LindaMThoracic

Disclosures – Linda Martin

Commercial Interest	Relationship(s)
Astra Zeneca	Advisory Board; Principal Investigator MDT-Bridge
On Target Laboratories	Steering Committee for ELUCIDATE trial
Genentech	Speakers Bureau
Ethicon	Speakers Bureau
BMS	Advisory Board

Methodology

- Review of journal sites for top papers:
 - NEJM
 - Lancet
 - JCO
 - JTO
 - Annals of Surgery
 - JAMA Surgery
- Annals of Thoracic Surgery and JTCVS sent me top cited, read papers
- Twitter
- Podcasts

Last Year – 2024

• Lung Cancer Papers

- Keynote 671 podcast 1
- AEGEAN
- NADIM 2 podcast 1
- NeoTorch Interim Report
- ADAURA Survival Data
- ASCO stage 3 guidelines update
- AATS 2023 Expert Consensus Document: Staging and multidisciplinary management of patients with early-stage non-small cell lung cancer
- LCMC3 surgical outcomes
- Virtual reality planning for segmentectomy
- CEACAM5 molecular imaging

• Thoracic Videos

• Top 5 CTSnet thoracic videos of 2023

• Esophageal Cancer Papers

- Omental Flaps for Anastomosis Reinforcement
- Comparison of Gastric Ischemic Preconditioning Techniques
- ICG imaging in thoracic and esophageal surgery
- DICE
- Survival Impact Of Thoracic Duct Resection

Benign Esophagus Papers

- MUSOIC study perforation outcomes
- Heller technique comparison over 48 years

• Professional Topics

 Effect of Smoke Evacuator on Reduction of Volatile Organic Compounds and Particles in Surgical Smoke: A Randomized Controlled Trial

Today's Review: 2024-2025

• General:

- Cancer Statistics 2025
- Radiation Toxicities Review
- Top Annals and JTCVS papers
- Mesothelioma:
 - MARS 2
 - 9th edition TNM –Dr. Rusch

• Lung Cancer:

- Pack-Year Smoking History Revisited
- All 140503 papers
- CANOPY-A
- NADIM(1) 5 year outcomes
- EORTC Consensus on Resectability (and STS video)
- CheckMate 77T
- Keynote 671 Survival Outcomes
- ALINA June GTSC Podcast

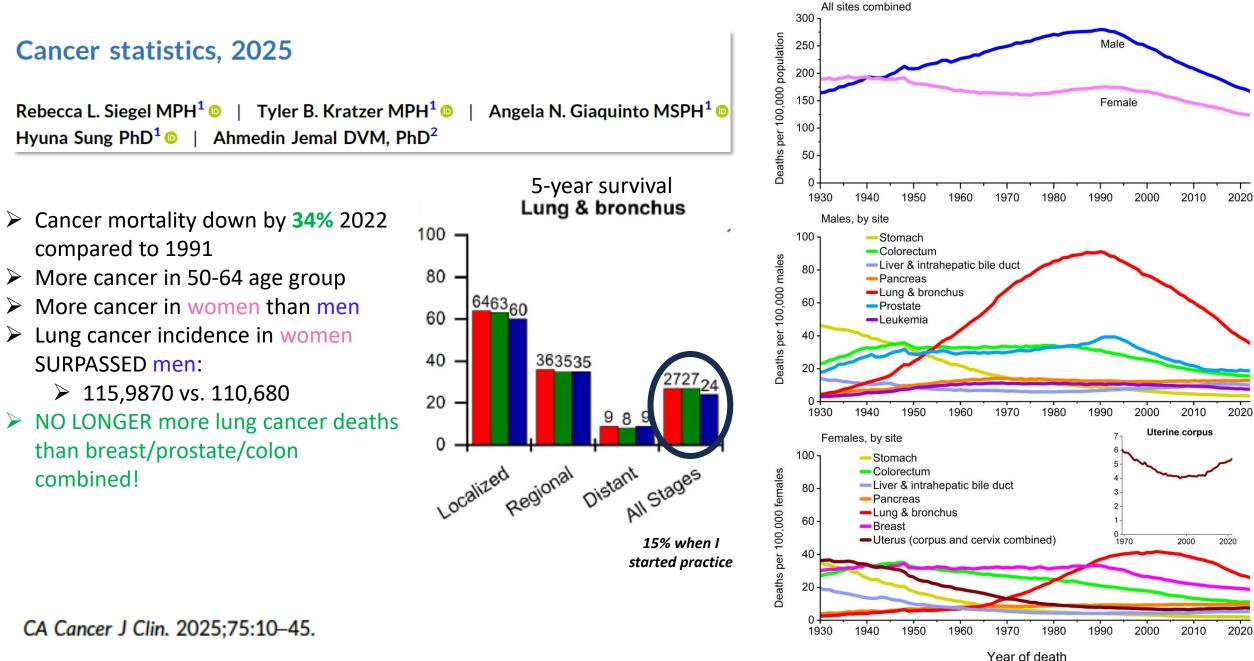
- 9th edition TNM Dr. Rusch
- NeoAdaura NEXT YEAR

Esophageal Cancer

- ESOPEC trial
- Esophageal Cancer Review
- SANO Dr. Ferri
- Checkmate 577 survival NEXT YEAR
- 9th edition TNM Dr. Hofstetter
- Benign Esophagus
 - Gastropexy in PEH repair

Professional Matters

- Surgeon Shortage
- Female vs Male Surgeon Outcomes
- Divorce Rate For Surgeons vs Nonsurgeons
- For The Love Of the Game Academic "Tax



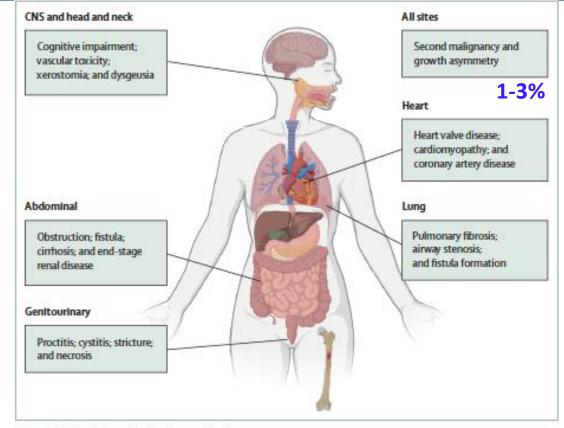
General Cancer Topics

Cancer Statistics 2025 CA A Cancer Journal Jan 2025

Radiation Toxicities - Review Lancet January 2025

Radiotherapy toxicities: mechanisms, management, and future directions

Ioannis I Verginadis, Deborah E Citrin, Bonnie Ky, Steven J Feigenberg, Alexandros G Georgakilas, Christine E Hill-Kayser, Constantinos Koumenis, Amit Maity, Jeffrey D Bradley, Alexander Lin


Lancet 2025; 405: 338–52

Published Online January 16, 2025 https://doi.org/10.1016/ S0140-6736(24)02319-5 Department of Radiation Oncology (I I Verginadis PhD, Prof 5 J Feigenberg MD, Prof C Koumenis PhD, Prof Z Baradley MD, Prof A Lin MD,

For over a century, radiotherapy has revolutionised cancer treatment. Technological advancements aim to deliver high doses to tumours with increased precision while minimising off-target effects to organs at risk. Despite advancements such as image-guided, high-precision radiotherapy delivery, long-term toxic effects on healthy tissues remain a great clinical challenge. In this Review, we summarise common mechanisms driving acute and long-term side-effects and discuss monitoring strategies for radiotherapy survivors. We explore ways to mitigate toxic effects through novel technologies and proper patient selection and counselling. Additionally, we address policies and management strategies to minimise the severity and impact of toxicity during and after treatment. Finally, we examine the potential advantages of emerging technologies and innovative approaches to improve conformity, accuracy, and minimise off-target effects.

Part of being a cancer surgeon is understanding other modalities used in cancer treatment

-great review of evolution of radiation techniques, toxicities, how to minimize them

Figure 1: Toxic effects of radiotherapy by site

General overview of the most common long-term toxic effects of radiotherapy arising in different regions of the body. Figure created with BioRender.com.

Thorax			
Oesophagus	Fistula and stenosis	Fistula (with chemoradiation for non- small-cell lung cancer): <1% (grade 5); ³⁵ stenosis: 2% (at 50.0 Gy or less) to 15% (at > 60.0 Gy) ³⁶	Limit max dose to oesophagus to <50-0 Gy
Heart	Cardiovascular events (eg, coronary disease, valvular dysfunction, heart failure, pericardial disease, and arrythmia)	23–32% (with high-dose irradiation close to the organ) ^{IV}	Limit mean dose to heart to <20-0 Gy, 30 limit volume of left anterior descending artery receiving 15-0 Gy to <10% 30 and volume of left ventricle receiving 15-0 Gy to <1% 30
Lung	Pneumonitis	12% (grade 1–2); <1% (grade ≥3, with high-dose direct irradiation) [®]	With conventional radiotherapy, limit volume of lung receiving 20-0 Gy to s40% and mean lung dose to s20-0 Gy 75
Lung	Fibrosis	10% (grade 1–2, with high-dose direct irradiation) ⁴⁰	Limit dose to <30 Gy ⁴¹

Top Cited/Downloaded: Annals of Thoracic Surgery

Top Annals of Thoracic Surgery Papers for 2024

Top Viewed/Cited

		<u>2024</u>	<u>Total</u>
The Annals: Top Papers in GENERAL THORACIC SURGERY (2023-4 Articles)	Authors	<u>Cites</u>	<u>Usage</u>
Segmentectomy vs. Lobectomy for Early Non-Small-Cell Lung Cancer with			
	Mathey-Andrews, Abrusso, Venkateswaran, Potter, Senthil, Beqari, Yang, Lanuti	11	1086
The Society of Thoracic Surgeons General Thoracic Surgery Database: 2023	Towa Sanuaia Brown Blachard Mitchall Warrell		
	Towe, Servais, Brown, Blasberg, Mitchell, Worrell, Seder, David	10	620
The Impact of Enhanced Recovery After Surgery on Persistent Opioid Use Following	Turner Delman Criffith Wime Wallon Starnes		
Pulmonary Resection	Turner, Delman, Griffith, Wima, Wallen, Starnes, Budde, Van Haren	10	701
Enhanced Recovery Protocol Associated with Decreased 3-Month Opioid Use	Strahol Kraho Cuppingham Chaudry Mahaffay		
Following Thereade Curgery	Strobel, Krebs, Cunningham, Chaudry, Mehaffey, Sarosiek, Durieux, Dunn, Naik, Blank, Martin	7	549
Importance Of Lymph Node Evaluation In 2-centimeter Or Less Pure Solid Non-			
small Cell Lung Cancer	Choi, Yoon, Shin, Kim, Choi, Kim, Shim, Cho	8	693
Impact of Operation on Disease Progression and Survival of Patients with Pleural	Nakamura, Hashimoto, Kuroda, Matsumoto, Kondo,		
	Kitajima, Minami, Kuribayashi, Kijima, Hasegawa	6	583
5-year Sustained Impact of a Thoracic Enhanced Recovery after Surgery Program	Young, Viktorsson, Strobel, Rotar, Cramer, Scott,	6	484
S year sustained impact of a moracle emanced necovery after surgery mogram	Carroll, Blank, Marlin		404

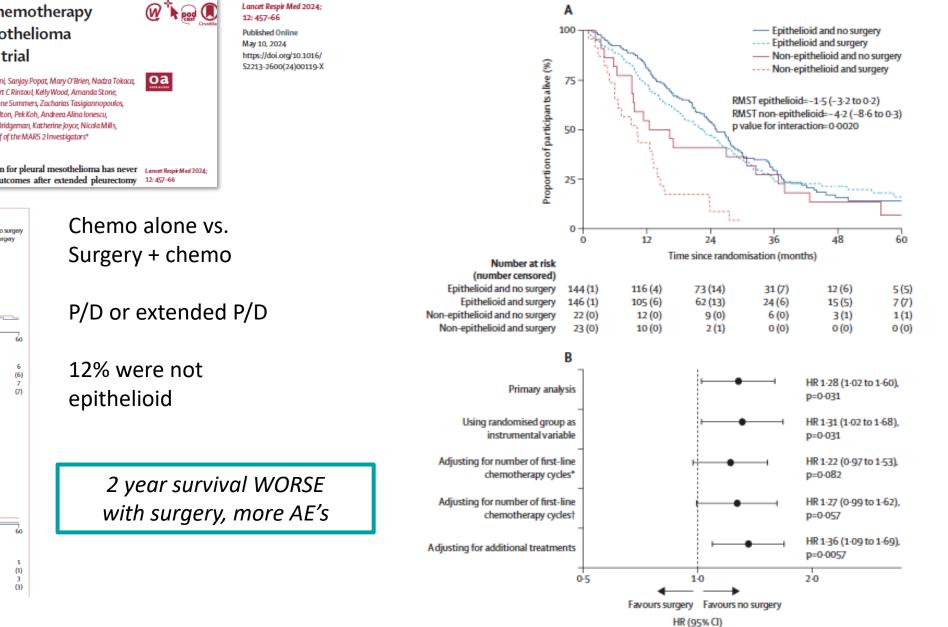
Top Cited/Downloaded: JTCVS

Top Cited JTCVS papers for 2023-2024

Title	Authors	date	Citations
Lobectomy, segmentectomy, or wedge resection for peripheral clinical T1aN0 non–small cell lung cancer: A post hoc analysis of CALGB 140503 (Alliance)	Altorki, N.; Wang, X.; Damman, B.; Mentlick, J.; Landreneau, R.; Wigle, D.; Jones, D.; Conti, M.; Ashrafi, A.; Liberman, M.; de Perrot, M.; Mitchell, J.; Keenan, R.; Bauer, T.; Miller, D.; Stinchcombe, T.	7/23	34
Neoadjuvant therapy does not increase postoperative morbidity of sleeve lobectomy in locally advanced non–small cell lung cancer	Li, X.; Li, Q.; Yang, F.; Gao, E.; Lin, L.; Li, Y.; Song, X.; Duan, L.	3/23	14
Long-term outcome of patients with peripheral ground-glass opacity–dominant lung cancer after sublobar resections	Yoshino, I.; Moriya, Y.; Suzuki, K.; Wakabayashi, M.; Saji, H.; Aokage, K.; Suzuki, M.; Ito, H.; Matsumoto, I.; Kobayashi, M.; Okamoto, T.; Okada, M.; Yamashita, M.; Ikeda, N.; Nakamura, S.; Kataoka, T.; Tsuboi, M.; Watanabe, S.	1/23	14
Extent of surgical resection for radiologically subsolid T1N0 invasive lung adenocarcinoma: When is a wedge resection acceptable?	Zhang, C.; Pan, Y.; Li, H.; Zhang, Y.; Li, B.; Zhang, Y.; Luo, X.; Miao, L.; Ma, L.; Chen, S.; Hu, H.; Sun, Y.; Zhang, Y.; Xiang, J.; Wang, S.; Gu, Y.; Li, Y.; Shen, X.; Wang, Z.; Ye, T.; Chen, H.	6/23	11
Two-year outcomes of clinical N2-3 esophageal squamous cell carcinoma after neoadjuvant chemotherapy and immunotherapy from the phase 2 NICE study	Yang, Y.; Liu, J.; Liu, Z.; Zhu, L.; Chen, H.; Yu, B.; Zhang, R.; Shao, J.; Zhang, M.; Li, C.; Li, Z.	9/23	11

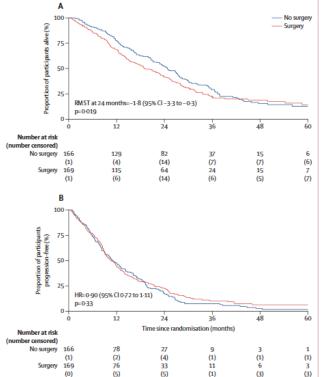
Top Viewed JTCVS papers for 2023-2024

			Total
Title	Authors	Date	Usage
The 2023 American Association for Thoracic Surgery (AATS) Expert Consensus Document: Management of subsolid lung nodules	Chen, H.; Kim, A.; Hsin, M.; Shrager, J.; Prosper, A.; Wahidi, M.; Wigle, D.; Wu, C.; Huang, J.; Yasufuku, K.; Henschke, C.; Suzuki, K.; Tailor, T.; Jones, D.; Yanagawa, J.	6/24	7,201
The American Association for Thoracic Surgery (AATS) 2023 Expert Consensus Document: Staging and multidisciplinary management of patients with early-stage non—small cell lung cancer	Kidane, B.; Bott, M.; Spicer, J.; Backhus, L.; Chaft, J.; Chudgar, N.; Colson, Y.; D'Amico, T.; David, E.; Lee, J.; Najmeh, S.; Sepesi, B.; Shu, C.; Yang, J.; Swanson, S.; Stiles, B.	6/23	6,811
Long-term outcome of patients with peripheral ground-glass opacity– dominant lung cancer after sublobar resections	Yoshino, I.; Moriya, Y.; Suzuki, K.; Wakabayashi, M.; Saji, H.; Aokage, K.; Suzuki, M.; Ito, H.; Matsumoto, I.; Kobayashi, M.; Okamoto, T.; Okada, M.; Yamashita, M.; Ikeda, N.; Nakamura, S.; Kataoka, T.; Tsuboi, M.; Watanabe, S.	1/23	5,381
Surgery for oligometastatic non-small cell lung cancer	Antonoff, M.; Deboever, N.; Werner, R.; Altan, M.; Gomez, D.; Opitz, I.	9/23	3,882
Surgical outcomes after chemotherapy plus nivolumab and chemotherapy plus nivolumab and ipilimumab in patients with non– small cell lung cancer	Feldman, H.; Sepesi, B.; Leung, C.; Lin, H.; Weissferdt, A.; Pataer, A.; William, W.; Walsh, G.; Rice, D.; Roth, J.; Mehran, R.; Hofstetter, W.; Antonoff, M.; Rajaram, R.; Gibbons, D.; Lee, J.; Heymach, J.; Vaporciyan, A.; Swisher, S.; Cascone, T.	10/23	3,627
Surgical management of non–small cell lung cancer with limited metastatic disease involving only the brain	Kumar, A.; Kumar, S.; Potter, A.; Raman, V.; Kozono, D.; Lanuti, M.; Jeffrey Yang, C.	4/23	2,233


Mesothelioma

MARS 2 Lancet Respiratory Medicine May 2024 (Bryan Burt reviewed last year)

MARS 2



Extended pleurectomy decortication and chemotherapy versus chemotherapy alone for pleural mesothelioma (MARS 2): a phase 3 randomised controlled trial

Eric Lim, David Waller, Kelvin Lau, Jeremy Steele, Anthony Pope, Clinton Ali, Rocco Bilancia, Manjusha Keni, Sanjay Popat, Mary O'Brien, Nadza Tokaca, Nick Maskell, Louise Stadon, Dean Fennell, Louise Nelson, John Edwards, Sara Tenconi, Laura Socci, Robert C Rintoul, Kelly Wood, Amanda Stone, Dakshinamoorthy Muthukumar, Charlotte Ingle, Paul Taylor, Laura Cove-Smith, Raffaele Californo, Yvonne Summers, Zacharias Tasigiannopoulos, Andrea Bile, Riyaz Shah, Elizabeth Fuller, Andrew Macnair, Jonathan Shamash, Talal Mansy, Richard Milton, Pek Koh, Andreea Alina lonescu, Sarah Treece, Amy Roy, Gary Middleton, Alan Kirk, Rosie A Harris, Kate Ashton, Barbara Warnes, Emma Bridgeman, Katherine Joyce, Nicola Mills, Daisy Elliott, Nicola Farra, Elizabeth Stokes, Vikki Hughes, Andrew G Nicholson, Chris A Rogers, on behalf of the MARS 21 nvestigators^a

Summary

Background Extended pleurectomy decortication for complete macroscopic resection for pleural mesothelioma has never been evaluated in a randomised trial. The aim of this study was to compare outcomes after extended pleurectomy 12: 457-66

Lung Cancer Papers

Pack-Year Smoking History: An Inadequate and Biased Measure to Determine Lung Cancer Screening Eligibility JCO March 2024

Pack-Year Smoking History: An Inadequate and Biased Measure to Determine Lung Cancer Screening Eligibility

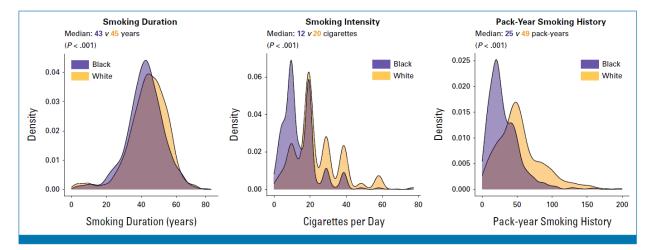
Alexandra L. Potter, BS¹; Nuo N. Xu, MSPH² ; Priyanka Senthil¹ ; Deepti Srinivasan, BS¹; Hang Lee, PhD³; G. Scott Gazelle, MD, MPH, PhD^{4,5}; Lydia Chelala, MD⁶ ; Wei Zheng, MD, MPH, PhD^{7,8} ; Florian J. Fintelmann, MD⁴ ; Lecia V. Sequist, MD, MPH⁹ ; Jessica Donington, MD¹⁰; Julie R. Palmer, ScD² ; and Chi-Fu Jeffrey Yang, MD¹

DOI https://doi.org/10.1200/JC0.23.01780

150

October 2018 Attention Score

In the top 5% of all research outputs scored by Altmetric


Mentioned by 14 news outlet 1 blog 75 X users 1 Redditor

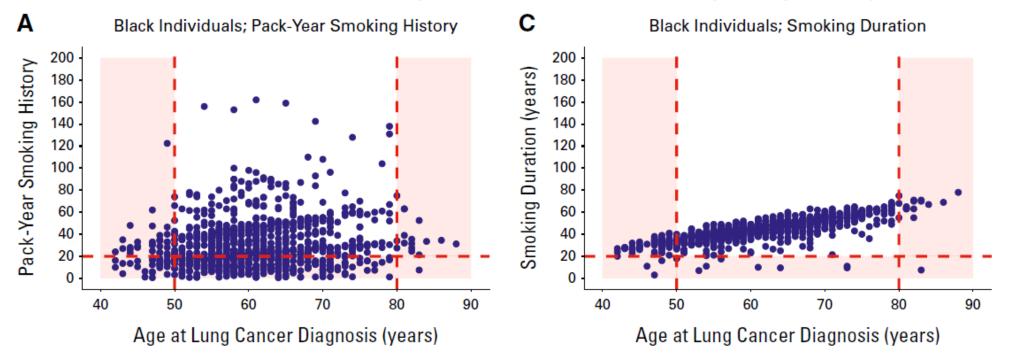
17 Mendeley

Of people diagnosed with lung cancer, how many met USPSTF criteria in Southern Community Cohort?

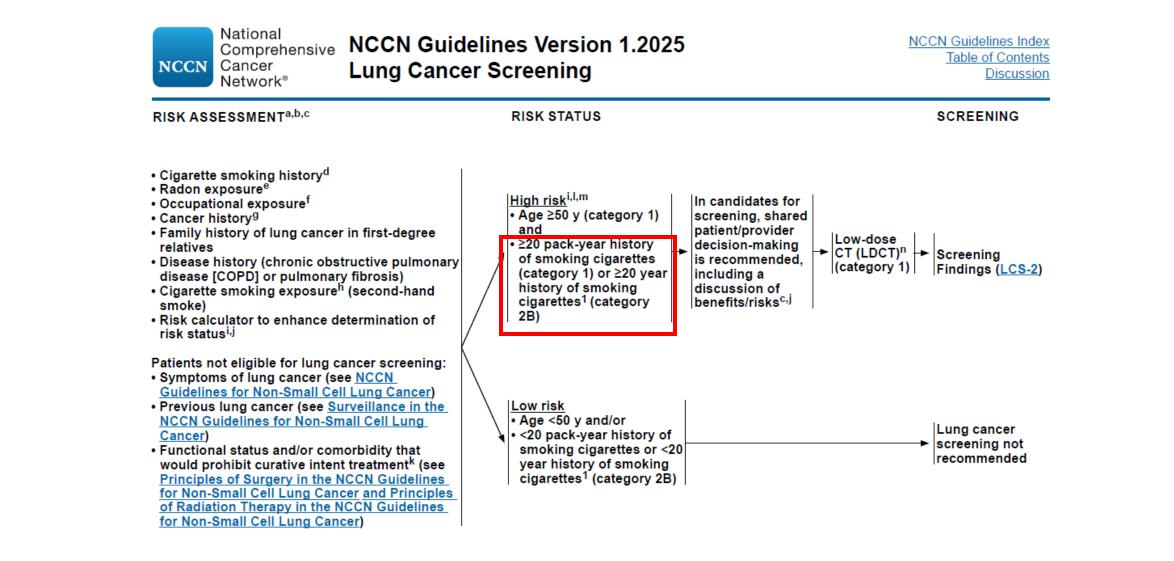
Changing Screening Criteria from
 20 *pack-years* to 20 *years* increases eligibility in:

Black lung cancer patients from 57.6% to 85.3% White lung cancer patients from 74% to 82%

UTECKTO


FIG 1. Distribution of smoking duration (years), smoking intensity (cigarettes per day), and pack-year smoking history among SCCS participants diagnosed with lung cancer SCCS, Southern Community Cohort Study.

Original Reports | Cancer Prevention and Control


Pack-Year Smoking History: An Inadequate and Biased Measure to Determine Lung Cancer Screening Eligibility

Key Finding: Revising the USPSTF lung cancer screening guideline to include a 20-year smoking duration cutoff increased the proportion of individuals with lung cancer who would have qualified for screening and eliminated the racial disparity in screening eligibility between Black and White individuals.

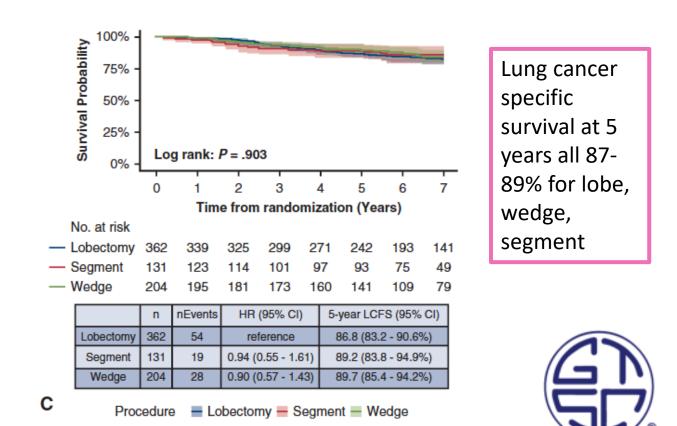
Alexandra L. Potter, Chi-Fu Jeffrey Yang et al, Journal of Clinical Oncology. 2024 42(17):2026-2037

Check for updates

¹ Potter AL, Xu NN, Senthil P, et al. Pack-year smoking history: An inadequate and biased measure to determine lung cancer screening eligibility. J Clin Oncol 2024;42:2026-2037.

The "Potter Criteria" is born...

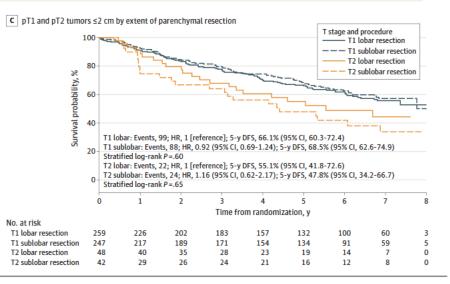
CALGB 140503 publications



Published to Date – CALGB 140503

Lobectomy, segmentectomy, or wedge resection for peripheral clinical T1aN0 non–small cell lung cancer: A post hoc analysis of CALGB 140503 (Alliance)

Nasser Altorki, MD,^a Xiaofei Wang, MD,^b Bryce Damman, MD,^c Jennifer Mentlick, MD,^c Rodney Landreneau, MD,^d Dennis Wigle, MD,^e David R. Jones, MD,^f Massimo Conti, MD,^g Ahmad S. Ashrafi, MD,^h Moishe Liberman, MD,ⁱ Marc de Perrot, MD,^j John D. Mitchell, MD,^k Robert Keenan, MD,¹ Thomas Bauer, MD,^m Daniel Miller, MD,ⁿ and Thomas E. Stinchcombe, MD^o


Published to Date – CALGB 140503

JAMA Oncology | Original Investigation

Recurrence of Non-Small Cell Lung Cancer With Visceral Pleural Invasion A Seconday Analysis of a Randomized Clinical Trial

Nasser Altorki, MD; Xiaofei Wang, PhD; Bryce Damman, MS; David R. Jones, MD; Dennis Wigle, MD, PhD; Jeffrey Port, MD; Massimo Conti, MD; Ahmad S. Ashrafi, MD; Moishe Lieberman, MD, PhD; Rodney Landreneau, MD; Kazuhiro Yasufuku, MD, PhD; Stephen Yang, MD; John D. Mitchell, MD; Robert Keenan, MD; Thomas Bauer, MD; Daniel Miller, MD; David Kozono, MD, PhD; Jennifer Mentlick; Everett Vokes, MD; Thomas E. Stinchcombe, MD

CONCLUSIONS AND RELEVANCE The results of this secondary analysis suggest that compared with patients with tumors without VPI, patients who had tumors with VPI had worse disease-free and recurrence-free survival and a higher rate of local and distant disease recurrence. These high rates of recurrence were independent of the extent of parenchymal resection, and these data support the inclusion of these patients in adjuvant therapy trials.

Visceral Pleural Invasion impacts **systemic** but not local recurrence

Secondary Analysis of the Rate of Second Primary Lung Cancer From Cancer and Leukemia Group B 140503 (Alliance) Trial of Lobar Versus Sublobar Resection for T1aN0 Non-Small-Cell Lung Cancer

Thomas E. Stinchcombe, MD¹ (i); Xiaofei Wang, PhD²; Bryce Damman, MS³ (ii); Jennifer Mentlick, HS³; Rodney Landreneau, MD⁴; Dennis Wigle, MD, PhD⁵; David R. Jones, MD⁶ (ii); Massimo Conti, MD⁷ (iii); Ahmad S. Ashrafi, MD⁸; Moishe Liberman, MD, PhD⁹; Marc de Perrot, MD¹⁰ (iii); John D. Mitchell, MD¹¹ (iii); Robert Keenan, MD¹²; Thomas Bauer, MD¹³; Daniel Miller, MD¹⁴; and Nasser Altorki, MD¹⁵

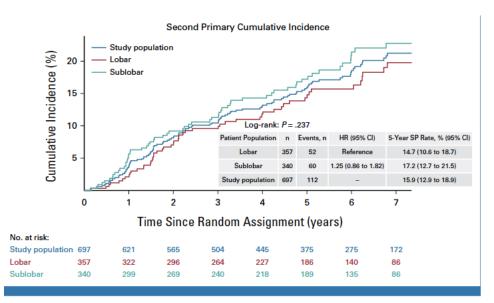


FIG 1. Cumulative incidence of second primary lung cancer in the study population, sublobar arm, and obar arm. HR, hazard ratio.

Second primary lung cancer: Risk about 3.5% per year Cumulative 15-17% at 5 years Not significant between resection types

Recent Abstracts – CALGB 140503

#WCLC24 wclc2024.iaslc.org

Postoperative Complications Compromised Disease-Free and Recurrence-Free Survival in CALGB 140503 (Alliance) Trial Patients

Daniel Miller¹, Xiaofei Wang², Bryce Damman³, Thomas Stinchcombe⁴, Jennifer Mentlick³, Rodney Landreneau⁵, Dennis Wigle³, David Jones⁶, Massimo Conti⁷, Ahmad Ashrafi⁸, Moishe Liberman⁹, Marc de Perrot¹⁰, John Mitchell¹¹, Robert Keenan¹², Thomas Bauer¹³, Nasser Altorki¹⁴

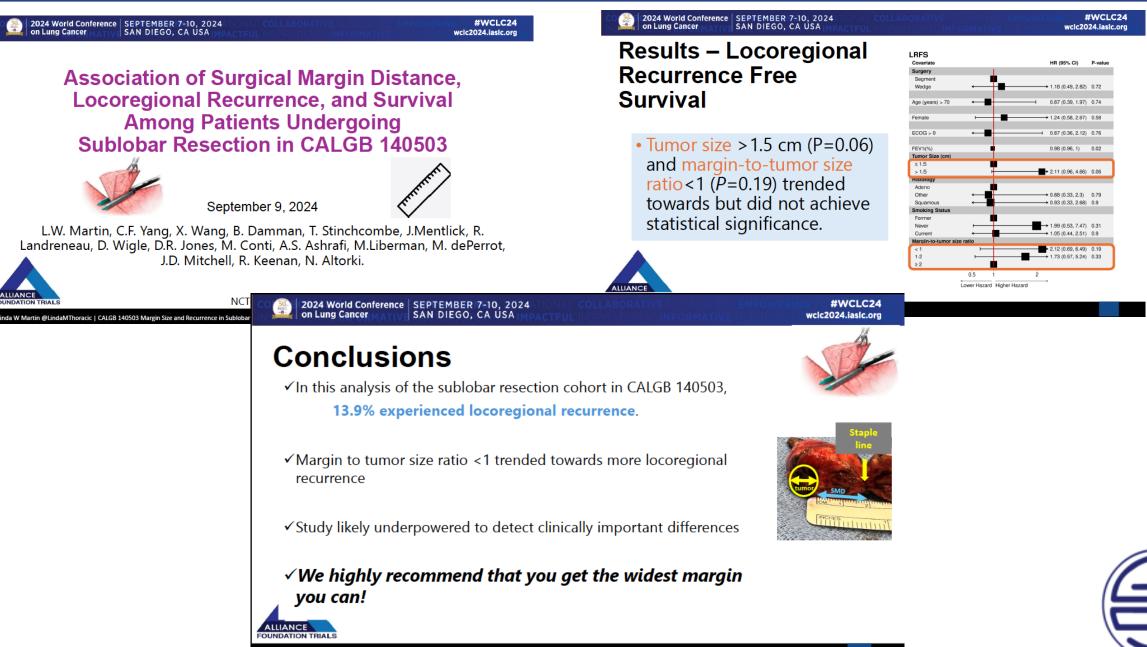
¹Emory University School of Medicine, Atlanta, GA, ²Alliance Statistics/Data Management Center, Duke Ur Durham, NC, ³Mayo Clinic, Rochester, MN ⁴Biostatistics and Bioinformatics, Duke University, Durham, NC, of Pittsburgh Medical Center, Pittsburgh, PA,, ⁶Memorial Sloan Kettering Cancer Center, New York, NY, ⁷ Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC, ⁸Surrey Memorial Hospital, Fraser Val Authority, BC, ⁹Centre Hospitalier de l'Université de Montréal, Montreal, QC, ¹⁰Thoracic Surgery, Toronto, ON of Colorado Hospital School of Medicine, Aurora, CO, ¹²Moffitt Cancer Center, Tampa, FL, ¹³Hackensack Men System, Edison, NJ, ¹⁴Weill Cornell Medicine/New York-Presbyterian, New York, NY.

Dan Miller MD | CALGB 140503 Complications/Survival

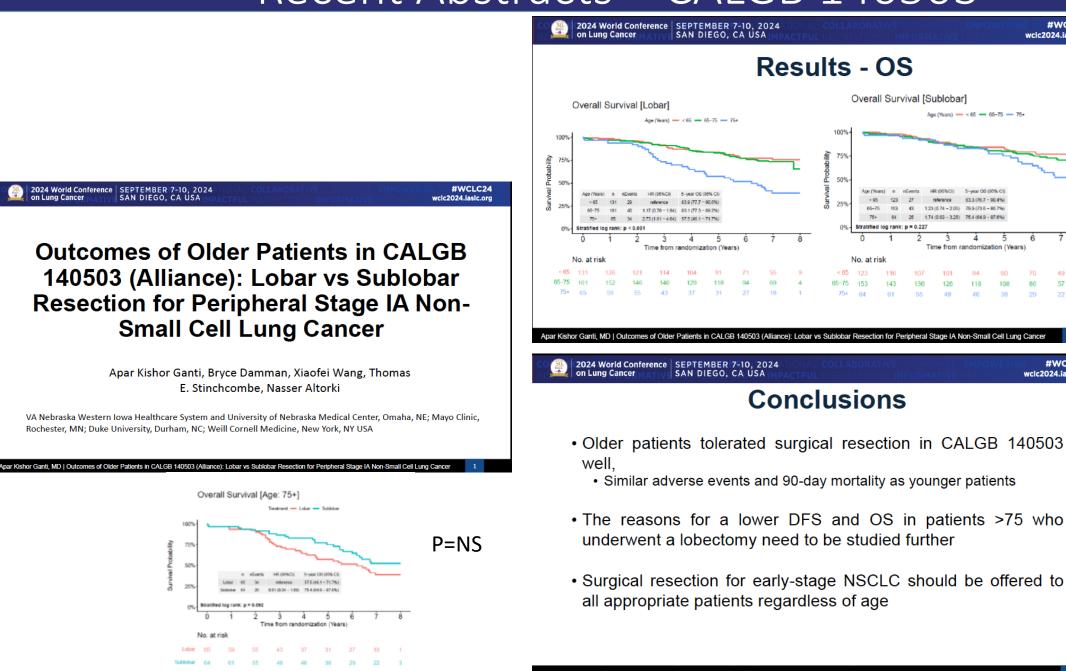
2024 World Conference SEPTEMBER 7-10, 2024 on Lung Cancer SAN DIEGO, CA USA

2024 World Conference SEPTEMBER 7-10, 2024 on Lung Cancer SAN DIEGO, CA USA

#WCLC24 wclc2024.iasic.org


Conclusions

In this large, prospective randomized trial, High Grade AEs negatively influenced Disease-Free and Recurrence-Free survival, but not overall survival. LRR and DR survivals were also affected, but not significantly.


This analysis shows that even in patients who undergo resection for the smallest (≤ 2 cm) of NSCLCs, postoperative High-Grade AEs can decrease cancer-specific survivals.

Prevention (ERAS protocols) of postoperative High-Grade AEs is mandatory in patients undergoing surgical treatment for early-stage NSCLC to reduce recurrence and maximize survival. Less than 10% of sites had Fast track or ERAS protocols during trial time period.

Recent Abstracts – CALGB 140503

Recent Abstracts – CALGB 140503

#WCLC24

#WCLC24

wclc2024.iaslc.org

wclc2024.iaslc.org

Age (Years) - < 65 - 65-75 - 754

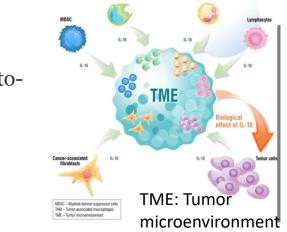
4

Time from randomization (Years)

3

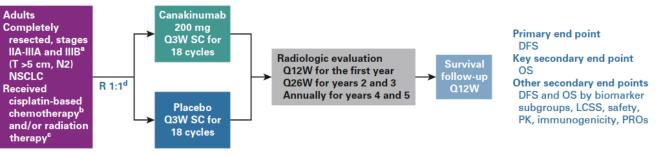
CANOPY-A Trial JCO Oct 2023

Canakinumab as Adjuvant Therapy in Patients With Completely Resected Non-Small-Cell Lung Cancer: Results From the CANOPY-A Double-Blind, Randomized Clinical Trial

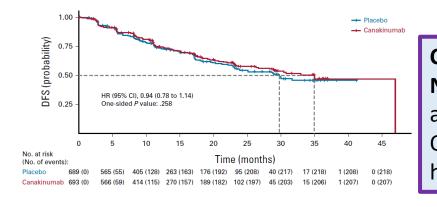

Edward B. Garon, MD¹ (D; Shun Lu, MD² (D; Yasushi Goto, MD, PhD³ (D; Pedro De Marchi, MD, PhD⁴ (D; Luis Paz-Ares, MD, PhD⁵ (D; David R. Spigel, MD⁶ (b); Michael Thomas, MD⁷ (b); James Chih-Hsin Yang, MD, PhD⁸ (b); Andrea Ardizzoni, MD⁹; Fabrice Barlesi, MD, PhD^{10,11}; Sergey Orlov, MD, PhD¹² (D); Hiroshige Yoshioka, MD, PhD¹³ (D); Giannis Mountzios, MD, PhD¹⁴; Sadhvi Khanna, MS¹⁵; Claudia Bossen, PhD¹⁶. Mariana Carbini, MD¹⁶; Sabine Turri, MS¹⁵; Andrea Myers, MD, PhD¹⁷; and Byoung Chul Cho, MD, PhD¹⁸

- Inflammation assoc. with cancer development
- IL-1 β drives inflammation
- Block IL-1 β , should block cancer growth
- Canakinumab blocks IL-1 β
- CANTOS trial for cardiovasc. disease unexpected reduction in lung cancer incidence and mortality

Fig. 2


Targeting IL-1 β :

- induces cytokine production
- angiogenesis
- tumor epithelial-tomesenchymal transition,
- Growth
- Invasion
- Adhesion

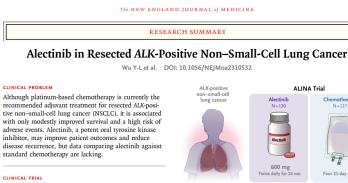


Inflammasome

Phase 3 RCT 1382 patients Stage II-IIIB NSCLC

(Colchicine was considered instead of canakinumab but not used)

NCT03447769 JCO Oct 2023


Conclusions: Negative trial; not helpful in adjuvant setting Ongoing prevention trial for high-risk people

ALINA Trial NEJM April 2024 (see also GTSC Podcast)

Adjuvant Therapy for ALK + Lung Cancer

Design: A global, phase 3, open-label, randomized trial assessed the efficacy and safety of alectinib as adjuvant therapy in resected ALK-positive NSCLC.

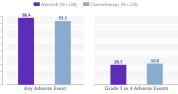
Intervention: 257 adults with completely resected, ALKpositive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA were randomly assigned to receive oral alectinib (600 mg twice daily) for 24 months or four 21-day cycles of intravenous platinum-based chemotherapy. The primary end point was disease-free survival.

RESULTS

Efficacy: During a median follow-up of 27.8 months (27.8 months in the alectinib group and 28.4 months in the chemotherapy group), alectinib therapy was associated with a 76% lower risk of disease recurrence or death than chemotherapy.

Safety: Adverse events were common, most were low grade, and few led to treatment discontinuation. No new safety issues arose.

LIMITATIONS AND REMAINING QUESTIONS


- · Black patients were underrepresented in the trial population.
- · Longer follow-up is needed to better understand the effect of adjuvant alectinib on overall survival.
- · The trial did not address the potential usefulness of adding chemotherapy to alectinib, which could allow therapy intensification in selected patient groups
- The appropriate treatment duration of adjuvant targeted therapies in resectable NSCLC is still unclear.

Links: Full Article | NEJM Quick Take | Editorial

Disease Recurrence or Death HR. 0.24 (95% CI. 0.13-0.43): P<0.00 18 24 30 Months since Randomiza

Adverse Events

CONCLUSIONS

In patients with resected ALK-positive NSCLC, adjuvant alectinib showed a significant benefit with respect to disease-free survival as compared with adjuvant platinumbased chemotherapy, as well as a low-grade safety profile with few discontinuations due to adverse events.

Copyright @ 2024 Massachusetts Medical Society

#STS2025

5-7% of adenocarcinoma patients are ALK +

Postoperative treatment with targeted therapy, NO CHEMO

alectinib

Recurrence HR 0.24!!!

Recurrence in brain: HR 0.22

Survival data NR yet

Wu Y NEJM April 2024

NADIM (1) Lancet Oncology 2024

Perioperative chemotherapy and nivolumab in non-smallcell lung cancer (NADIM): 5-year clinical outcomes from a multicentre, single-arm, phase 2 trial

0

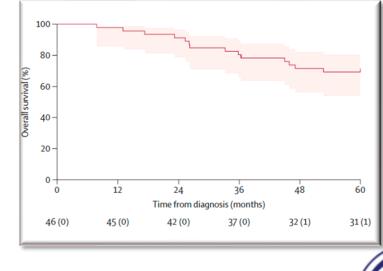
۵

Mariano Provencio, Ernest Nadal, Amelia Insa, Rosario García Campelo, Joaquín Casal, Manuel Dómine, Bartomeu Massuti, Margarita Majem, Delvys Rodríguez-Abreu, Alex Martínez-Martí, Javier de Castro, David Gómez de Antonio, Iván Macia, Santiago Figueroa, Luís Fernández Vago, Virginia Calvo, Ramón Palmero, Belén Sierra-Rodero, Cristina Martínez-Toledo, Marta Molina-Alejandre, Roberto Serna-Blasco, Atocha Romero, Alberto Cruz-Bermúdez

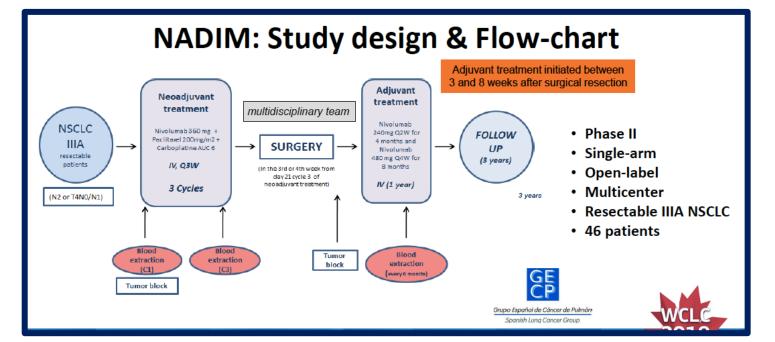
Summary

 Background Perioperative immunotherapy improves short-term outcomes in resectable non-small-cell lung
 Lancet Oncol 2024; 25: 1453-64

 cancer (NSCLC). We now report 5-year survival from the NADIM trial to assess its long-term benefit.
 Published Online

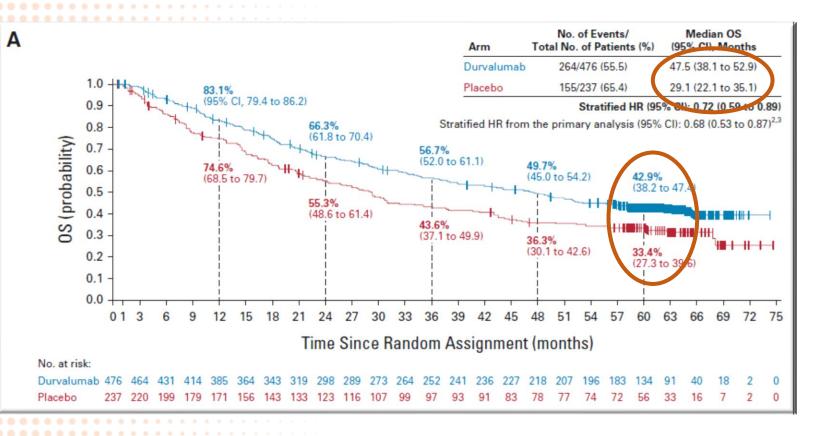

Published Online October 14, 2024 https://doi.org/10.1016/

Methods NADIM was a multicentre, single-arm, phase 2 trial conducted across 18 hospitals in Spain. Patients were are 18 years or older had an Eastern Cooperative Oncology Group performance status of 0 or 1 and had histologically 51470-2045(24)00498-4


NADIM (1)

Phase 2 trial, 18 centers46 patients5 years of follow up

Overall 5 year survival 69%



Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer

David R. Spigel, MD¹; Corinne Faivre-Finn, MD, PhD²; Jhanelle E. Gray, MD³; David Vicente, MD⁴; David Planchard, MD, PhD⁵; Luis Paz-Ares, MD, PhD⁶; Johan F. Vansteenkiste, MD, PhD⁷; Marina C. Garassino, MD^{8,9}; Rina Hui, PhD¹⁰; Xavier Quantin, MD, PhD¹¹; Andreas Rimner, MD¹²; Yi-Long Wu, MD¹³; Mustafa Özgüroğlu, MD¹⁴; Ki H. Lee, MD¹⁵; Terufumi Kato, MD¹⁶; Maike de Wit, MD, PhD¹⁷; Takayasu Kurata, MD¹⁸; Martin Reck, MD, PhD¹⁹; Byoung C. Cho, MD, PhD²⁰; Suresh Senan, PhD²¹; Jarushka Naidoo, MBBCH, MHS²²; Helen Mann, MSc²³; Michael Newton, PharmD²⁴; Piruntha Thiyagarajah, MD²³; and Scott J. Antonia, MD, PhD³; on behalf of the PACIFIC Investigators

Pacific

Journal of Clinical Oncology Feb 2022

Overall 5 year survival 43%

Cross trial comparison – yep, "illegal"

• 5 year survival Nadim 1 vs PACIFIC:

•69% vs 42%

 PACIFIC methods never described how patients were deemed unresectable – just ask Harvey Pass

• I am sure many PACIFIC patients could have been NADIM patients

EORTC Resectability Guidelines Lung Cancer Jan 2025

An international and multidisciplinary EORTC survey on resectability of stage III non-small cell lung cancer

Ilias Houda^a, Idris Bahce^a, Chris Dickhoff^b, Tiuri E. Kroese^c, Stephanie G.C. Kroeze^d, Alessio V. Mariolo 0, Marco Tagliamento 20, Laura Moliner 0, Mariana Brandão 0, Yassin Pretzenbacher^j, John Edwards^k, Isabelle Opitz¹, Alessandro Brunelli^m, Matthias Guckenberger ", Paul E. van Schil", Sanjay Popat P, Torsten Blum 9-10 Corinne Faivre-Finn^{1,1}, Dirk de Ruysscher^{1,v}, Jordi Remon^f, Thierry Berghmans¹, Anne-Marie C. Dingemans W, Benjamin Besse^f, Lizza E.L. Hendriks *** 0

Lung Cancer 199 (2025) 108061 When the respondents were asked "Would you recommend surgery after downstaging with neoadjuvant chemoimmunotherapy, assuming available in your country, in cases that were answered with maybe" (assessed by the respondent in the resectability assessment of the TNMsubsets in stage III NSCLC), the respondents agreed on recommending surgery (83%, n-463). A similar question with unresectable cases showed no agreement between the respondents (49%, n-275).

	NO	N1	N2 _{SINGLE}	N2 _{MULTI}	N2 _{BULKY}	N2 INVASIVE
T1-2	N/A	N/A	POTENTIALLY RESECTABLE (95%)	NO AGREEMENT (50%)	UNRESECTABLE (75%)	UNRESECTABLE (84%)
тз _{ял}	N/A	RESECTABLE (83%)*	POTENTIALLY RESECTABLE (87%)	NO AGREEMENT (39%)	UNRESECTABLE (80%)	UNRESECTABLE (80%)
T3 SATELLITE	N/A	POTENTIALLY RESECTABLE (94%)	POTENTIALLY RESECTABLE (79%)	NO AGREEMENT (34%)	UNRESECTABLE (84%)	UNRESECTABLE (91%)
T3 INVASION	N/A	POTENTIALLY RESECTABLE (89%)	NO AGREEMENT (71%)*	NO AGREEMENT (28%) ²	UNRESECTABLE (87%)	UNRESECTABLE (92%)
T4 _{SIZE}	POTENTIALLY RESECTABLE (94%)	POTENTIALLY RESECTABLE (90%)	NO AGREEMENT (66%)	UNRESECTABLE (77%)	UNRESECTABLE (88%)	UNRESECTABLE (93%)
T4 SATELLITE	POTENTIALLY RESECTABLE (78%)	NO AGREEMENT (71%) ^b	NO AGREEMENT (44%)	UNRESECTABLE (85%)	UNRESECTABLE (92%)	UNRESECTABLE (94%)
T4 INVASION	NO AGREEMENT (62%) ^b	NO AGREEMENT (57%) ⁹	NO AGREEMENT (34%) ⁴	UNRESECTABLE (90%)	UNRESECTABLE (95%)	UNRESECTABLE (94%)

Dec 2024

online

STS Summary Video on Resectability

The Annals of Thoracic Surgery

Video Summary for

The Society of Thoracic Surgeons Expert Consensus on the Multidisciplinary Management and Resectability of Locally Advanced Non-Small Cell Lung Cancer

Samuel S. Kim, David T. Cooke, Biniam Kidane, Luis F. Tapias, John F. Lazar, Jeremiah W. Awori Hayanga, Jyoti D. Patel, Joel W. Neal, Mohamed E. Abazeed, Henning Willers, Joseph B. Shrager

Volume 119. Number 1

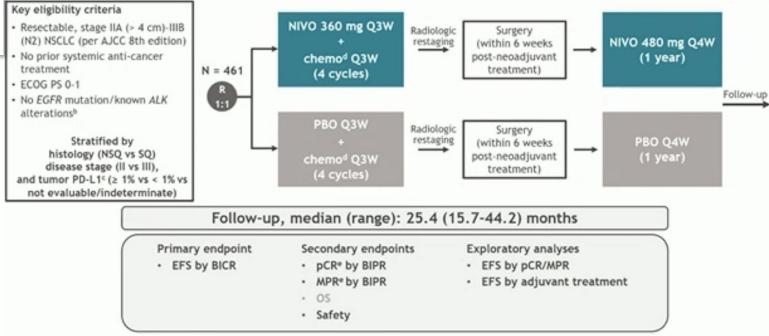
January 2025 0:05 / 2:45

CheckMate 77T NEJM May 2024

The NEW ENGLAND JOURNAL of MEDICINE

CheckMate 77T

ORIGINAL ARTICLE


Perioperative Nivolumab in Resectable Lung Cancer

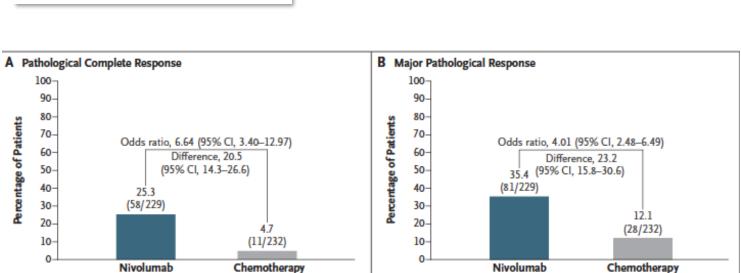
T. Cascone, M.M. Awad, J.D. Spicer, J. He, S. Lu, B. Sepesi, F. Tanaka, J.M. Taube, R. Cornelissen, L. Havel,* N. Karaseva, J. Kuzdzal, L.B. Petruzelka, L. Wu, J.-L. Pujol, H. Ito, T.-E. Ciuleanu, L. de Oliveira Muniz Koch, A. Janssens, A. Alexandru, S. Bohnet, F.V. Moiseyenko, Y. Gao, Y. Watanabe,
C. Coronado Erdmann, P. Sathyanarayana, S. Meadows-Shropshire, S.I. Blum, and M. Provencio Pulla, for the CheckMate 77T Investigators⁺

Stage 2A-3B EGFR/Alk wild type 461 patients randomized

Primary endpoint: Event free survival

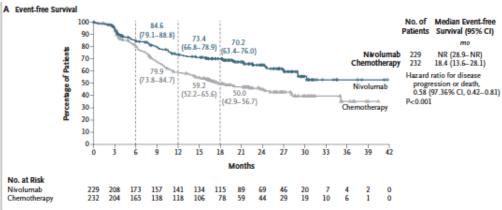
Database lock date: September 6, 2023.

HCT04025879. *EGFR testing was mandatory in all patients with NSQ histology. ALK testing was done in patients with a history of ALK alterations. EGFR/ALK testing done using US FDA/local health authority-approved assays. *Determined by the PD-L1 IHC 28-8 pharmDx assay (Dako). *HSQ: cisplatin + pemetrexed, carboplatin + pemetrexed, or carboplatin + paclitaxel; SQ: cisplatin + docetaxel or carboplatin + paclitaxel. *Assessed per immune-related pathologic response criteria.* BICR, blinded independent central review; BIPR, blinded independent pathological review. 1. Cottrell TR, et al. Ann Oncol 2018;29:1853-1860.



The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Perioperative Nivolumab in Resectable Lung Cancer

T. Cascone, M.M. Awad, J.D. Spicer, J. He, S. Lu, B. Sepesi, F. Tanaka, J.M. Taube, R. Cornelissen, L. Havel,* N. Karaseva, J. Kuzdzal, L.B. Petruzelka, L. Wu, J.-L. Pujol, H. Ito, T.-E. Ciuleanu, L. de Oliveira Muniz Koch, A. Janssens, A. Alexandru, S. Bohnet, F.V. Moiseyenko, Y. Gao, Y. Watanabe, C. Coronado Erdmann, P. Sathyanarayana, S. Meadows-Shropshire, S.I. Blum, and M. Provencio Pulla, for the CheckMate 77T Investigators[†]

CheckMate 77T

Path CR 25%, mPR 35% EFS 70% vs 50% at 18 months Higher PDL1 and higher stage benefit most

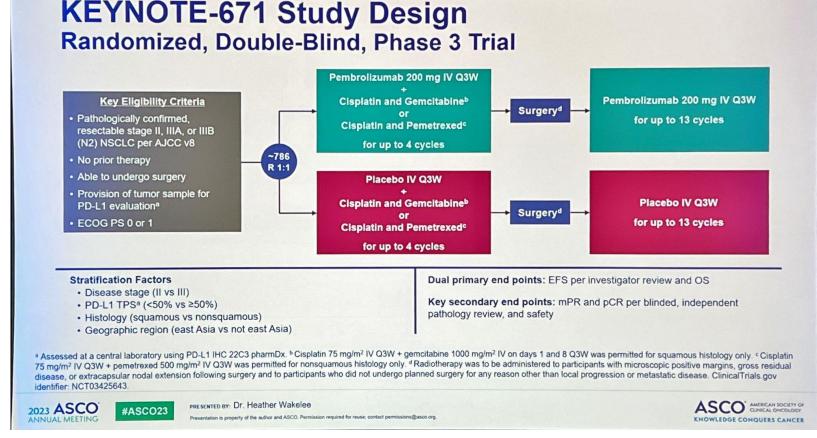
Subgroup	No. of			Unstraumed				ogression or Death
	Patients	Median Ever	nt-free Survival	Unstratified Hazard Ratio for Disease Progression or Death (95% CI)				
		Nivolumab (N=229)	Chemotherapy (N=232)			(
			mo					
Overall	461	NR (28.9–NR)	18.4 (13.6-28.1)		-+-			0.59 (0.44-0
Age								
<65 yr	202	NR (24.4–NR)	16.7 (11.0-28.2)					0.55 (0.36-0
≥65 yr	259	NR (28.9–NR)	20.1 (11.2–NR)					0.61 (0.41-0
Sex						1		
Male	327	NR (28.9–NR)	16.7 (10.2-NR)					0.53 (0.37-0
Female	134	30.2 (19.7-NR)	18.8 (14.7-35.1)			•		0.71 (0.41-1
Geographic region								
North America	44	30.2 (7.9-NR)	9.4 (6.2-22.0)			_	-	0.59 (0.25-1
Europe	250	NR (27.0-NR)	23.7 (15.1-NR)					0.61 (0.40-0
Asia	115	NR (24.2-NR)	13.9 (8.1-NR)		+	_		0.47 (0.26-0
ECOG performance-status sco	re							
0	288	NR (27.0-NR)	20.1 (12.6-NR)			_		0.57 (0.39-0
ĩ	173	29.0 (22.6-NR)	17.3 (10.6-35.1)			_		0.61 (0.39-0
Baseline disease stage								
II.	162	NR (22.6-NR)	NR (24.2-NR)					0.81 (0.46-1
iii	297	30.2 (26.9-NR)	13.4 (9.8-17.7)					0.51 (0.36-0
Node stage	2.27	Sore feets-rend	13.4 (3.0-11.1)		•			0.34 [0.30-0
N0	167	NR (24.2-NR)	NR (15.8-NR)					0.80 (0.48-1
NI	108	NR (24.4–NR)	28.1 (17.0-NR)					0.58 (0.29-1
N2	182	30.2 (26.9-NR)	10.0 (8.1-15.1)					0.46 (0.30-0
Single-station	112	30.2 (18.2-NR)	10.0 (6.5-18.4)					0.49 (0.29-0
Multistation	69	NR (13.2–NR)	10.0 (8.0-18.8)					0.43 (0.21-0
Turnor histology	63	NR (15.2-NR)	10.0 (8.0-18.8)		•	_		0.45 [0.21-0
			17 A (14 5 MIR)					
Squamous	234	NR (NR-NR)	17.0 (10.2-NR)		•	-		0.46 (0.30-0
Nonsquamous	227	28.9 (21.4–NR)	18.4 (13.6-28.1)		_	•		0.72 (0.49-1
Smoking status								
Current or former smoker	417	NR (29.0-NR)	17.0 (11.4-28.1)		-+-	-		0.54 (0.40-0
Never smoked	44	19.7 (3.7–NR)	25.0 (13.9-NR)		_			— 1.32 (0.54–3
Turnor PD-L1 expression								
<1%	186	29.0 (21.4-NR)	19.8 (13.9–NR)			• <u> </u>		0.73 (0.47-1
≥1%	256	NR (28.9-NR)	15.8 (9.3-35.1)		- •	-		0.52 (0.35-0
1-49%	159	30.2 (20.0-NR)	28.1 (11.0-NR)			•		0.76 (0.46-1
≥50%	97	NR (NR-NR)	8.0 (6.3-23.7)					0.26 (0.12-0
Neoadjuvant platinum chemot	herapy							
Cisplatin	97	27.0 (21.3-NR)	15.8 (8.8-28.1)					0.61 (0.35-1
Carboplatin	347	NR (29.0–NR)	17.3 (12.6-35.1)			-		0.53 (0.37-0
			0	125 0.250	0.500	1.000	2.000	4.000

Retter

Retter

Keynote 671 Survival Outcomes Lancet Sept 2024

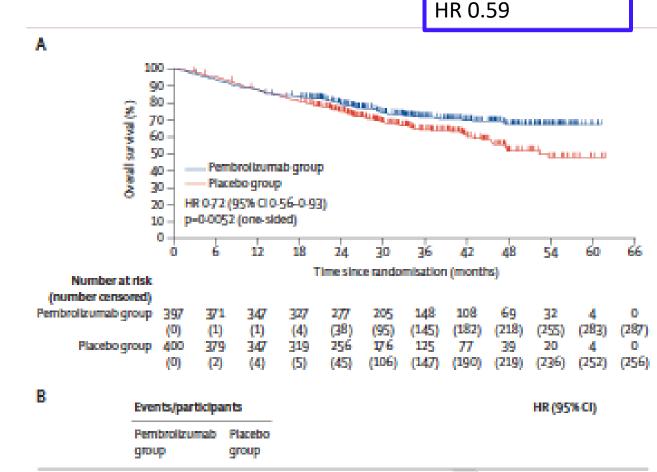
Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): a randomised, double-blind, placebo-controlled, phase 3 trial


lonathan D Spicer*, Marina C Garassino*, Heather Wakelee, Moishe Liberman, Terufumi Kato, Masahiro Tsuboi, Se-Hoon Lee, Ke-Neng Chen, Christophe Dooms, Margarita Majem, Ekkehard Eigendorff, Gastón L Martinengo, Olivier Bylicki, Delvys Rodríguez-Abreu, Jamie E Chaft, Silvia Novello, Jing Yang, Ashwini Arunachalam, Steven M Keller, Ayman Samkari, Shugeng Gao, on behalf of the KEYNOTE-671 Investigators† www.thelancet.com Vol 404 September 28, 2024

Keynote 671: Survival Results

Stage 2A-3B (no egfr/alk rules)

797 patients randomized


Endpoints: OS and EFS

Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): a randomised, double-blind, placebo-controlled, phase 3 trial

lonathan D Spicer*, Marina C Garassino*, Heather Wakelee, Moishe Liberman, Terufumi Kato, Masahiro Tsuboi, Se-Hoon Lee, Ke-Neng Chen, Christophe Dooms, Margarita Majem, Ekkehard Eigendorff, Gastón L Martinengo, Olivier Bylicki, Delvys Rodríguez-Abreu, Jamie E Chaft, Silvia Novello, Jing Yang, Ashwini Arunachalam, Steven M Keller, Ayman Samkari, Shugeng Gao, on behalf of the KEYNOTE-671 Investigators†

at 3 years:

HR 0.72

OS 71% vs 64%

EFS 54% vs 35%

Age, years				
<65	54/221	82/214		0.57 (0.40-0.8
a65	56/176	62/186		0-96 (0-67-1-3
Sex				
Female	21/118	30/116		0-69 (0-39-1-2
Male	89/2/9	114/284	-	073(055-05
Race				
White	73/250	97/239	-+-	0-66 (0-49-0
All others	34/134	39/145		0-93 (0-59-1-4
Geographical reg	ion			
East Asia	32/123	30/121		1-05 (0-64-17
Not eastAsia	78/2/4	114/2/9		0-63 (0-48-0-
Smoking status				
Current	31/96	48/103		0.59(0.38-0.9
Former	69/247	87/250	•	076(056-10
Never	10/54	947	- +	 1-00 (0-41-2-4
Clinical nodal sta	105			
NO	40/148	52/142		0.70 (0.46-14
N1	21/81	24/71	•	0.74 (0.41-1-3
N2	49/168	68/187		0.74 (0-51-1-0
Clinical disease s	tage (II vs III)			
	26/118	39/121	-	0-67 (0-41-1-1
	84/2/9	105/279	•	074 (055-05
Clinical disease s	tage (IIA vs IIB i	s IIA vs IIIB)		
M.	5/22	6/19	•	 0.75 (0.23-2-4
B	21/96	33/102	•	0-65 (0-38-1-1
IIA	62/217	79/224	•	074(053-10
B	22/62	26/55	•	0-69 (0-39-1.3
Clinical disease a	nd nodal status	5		
IIN2	49/168	68/187	•	074(051-10
II non-N2	35/111	37/92	-	0.71 (0.45-1.1
Histology				
Non-squamous	49/226	64/227	•	073 (0-50-1-0
Squamous	61/1/1	80/1/3		071(051-09
PD-L1TPS (50%)	utoff)			
<50%	87/265	109266	-	0,79(0-60-14
»50%	23/132	39/134		0-55 (0-33-0-5
PD-L1TPS (1% cu				
<1%	52/138	61/151		0-91 (0-63-1-3
»1%	58/259	83/249		0-62 (0-45-04
PD-L1TPS				
<1%	52/138	61/151		0-91 (0-63-1-)
1-49%	35/127	44/115	-	0-69 (0-44-14
»50%	23/132	39/134		0.55(0.33-0.9
EGFR mutation				
No	20/111	33/124		0-64 (0-37-1-1
Yes	1/14	919		0-24(0-03-24
Unknown	89/2/2	106/257	-	075(056-09
ALK translocatio	n			
No	22/104	38/132	-	0.70 (0.41-1.1
Unknown	87/281	105/259	•	072(054-04
All participants	110/397	144/400	•	072(0.56-0-

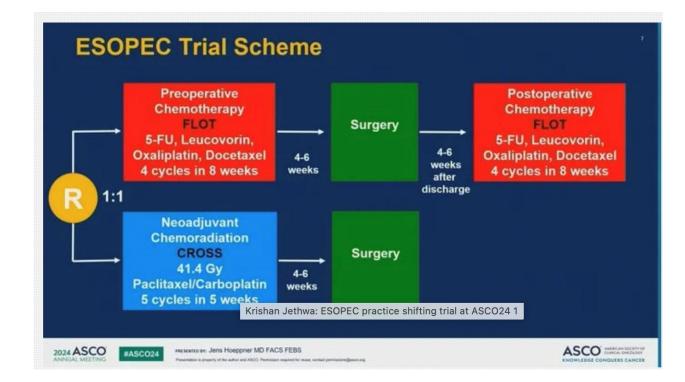
Favours pembrolizumab Favours placebo

Key Esophageal Papers

Esophageal Cancer

ESOPEC Trial NEJM Jan 2025 (see also GTSC podcast)

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812

JANUARY 23, 2025

VOL. 392 NO. 4

Perioperative Chemotherapy or Preoperative Chemoradiotherapy in Esophageal Cancer

J. Hoeppner, T. Brunner, C. Schmoor, P. Bronsert, B. Kulemann, R. Claus, S. Utzolino, J.R. Izbicki, I. Gockel, B. Gerdes, M. Ghadimi, B. Reichert, J.F. Lock, C. Bruns, E. Reitsamer, M. Schmeding, F. Benedix, T. Keck, G. Folprecht, P. Thuss-Patience, U.P. Neumann, A. Pascher, D. Imhof, S. Daum, T. Strieder, C. Krautz, S. Zimmermann, J. Werner, R. Mahlberg, G. Illerhaus, P. Grimminger, and F. Lordick ESOPEC Trial – Adenocarcinoma cT2-4a cN0 CT1-4a cN+ 438 patients randomized all but 2% were Siewert 1 or 2

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 JANUARY 23, 2025

Perioperative Chemotherapy or Preoperative Chemoradiotherapy in Esophageal Cancer

J. Hoeppner, T. Brunner, C. Schmoor, P. Bronsert, B. Kulemann, R. Claus, S. Utzolino, J.R. Izbicki, I. Gockel, B. Gerdes, M. Ghadimi, B. Reichert, J.F. Lock, C. Bruns, E. Reitsamer, M. Schmeding, F. Benedix, T. Keck, G. Folprecht, P. Thuss-Patience, U.P. Neumann, A. Pascher, D. Imhof, S. Daum, T. Strieder, C. Krautz, S. Zimmermann, J. Werner, R. Mahlberg, G. Illerhaus, P. Grimminger, and F. Lordick

Summary of Trial Results

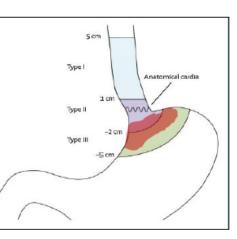
VOL. 392 NO. 4

	ESOPE	EC Trial				
	FLOT Group	CROSS Group	CROSS Trial (CRT Group - AC)	Neo-AEGIS Trial (CRT Group)	FLOT-4 (FLOT Group)	
Completed pre-op treatment	87.3%	67.7%	92%	87% (RT - 99%)	90%	
Completed post-op treatment	52.5%				46%	
pCR	16.8%	10%	23%	12%	16%	
Median OS	66 mos	39 mos	43 mos	49 mos	50 mos	
3-year OS	57.4%	50.7%	54%	57%	57%	

HR for survival: 0.70 HR for PFS: 0.66 3 year 57% vs 50% 5 year 50% vs 38%

Median survival 66 mo vs 37 mo

ESOPEC


Figure 2. Survival in the Intention-to-Treat Population.

Shown are data for overall survival (primary end point) (Panel A) and progression-free survival (Panel B). The unadjusted curves were estimated with Kaplan–Meier analyses, and the adjusted curves were estimated with Cox regression models adjusted for baseline clinical lymph-node stage and age.

Neo-AEGIS: Phase 3 RCT CROSS vs FLOT NCT01726452 Reported ASCO 2021

377 patients Adeno of Eso/GEJ

- Carbo Taxol + 41 GY (CROSS) vs.
 Docetaxel, 5FU, Leucovorin,
 Oxaliplatin (FLOT) or MAGIC
- 3 year survival 56% and 57%
- NONINFERIORITY of periop chemo vs. CROSS
- Useful for GEJ when not sure if Siewert 2 vs 3

	Arm A (Magic/FLOT)	Arm B CROSS
R0 (negative margins)	82%	95%
ypN0	44.5%	60.1%
Tumor regression grade 1 & 2	12.1%	41.7%
Pathologic complete response	5%	16%
Neutropenia (Gr 3/4)	14.1%	2.8%
Neutropenic sepsis	2.7%	0.6%
Postoperative in-hospital deaths	3%	3%
Postoperative Pneumonia/ARDS	20%/0.6%	16%/4.3%
Anastomotic Leak	12%	11.7%
Clavien-Dindo > III <v< td=""><td>23.6%</td><td>22%</td></v<>	23.6%	22%

© 2021 by American Society of Clinical Oncology

.2021.39.15 suppl.4004

DOI:10.1200/JCO.2021.39.15_suppl.4004 *J* ournal of Clinical Oncology 39, no. 15_suppl (May 20, 2021) 4004-4004.

https://ascopubs.org/doi/abs/10.1200/JCO

(Abstract Only)

Esophageal Cancer Review Lancet Nov 2024

www.thelancet.com Vol 404 November 16, 2024


Oesophageal cancer

Hong Yang, Feng Wang, Christopher L Hallemeier, Toni Lerut, Jianhua Fu

Oesophageal cancer is the seventh leading cause of cancer mortality worldwide. Two major pathological subtypes ex-Lancet 2024; 404: 1991-2005 ist: oesophageal squamous cell carcinoma and oesophageal adenocarcinoma. Epidemiological studies in the last dec-Department of Thoracic ade have shown a gradual increase in the incidence of oesophageal adenocarcinoma worldwide. The prognosis of Prof J Fu MD PhD) and oesophageal cancer has greatly improved due to breakthroughs in screening, surgical procedures, and novel treat-Department of Medical ment modalities. The success achieved with combined modality therapies, including surgery, chemotherapy, and ra-Oncology diotherapy, to treat locally advanced oesophageal cancer is particularly notable. Immunotherapy has become a crucial (Prof FWang MD PhD), Sun treatment for oesophageal cancer, with immune checkpoint inhibitor-based therapies now established as the standard Ya Center, Guangzhou, China; of care in adjuvant and metastatic first-line settings. This Seminar provides an overview of advances in the screening, diagnosis, and treatment of oesophageal squamous cell carcinoma and oesophageal adenocarcinoma, with a particu-Research Center for Cancer. lar focus on neoadjuvant therapies for locally advanced oesophageal cancer and immune checkpoint inhibitor-based State Key Laboratory of Oncology in South China, therapies. Collaborative Innovation

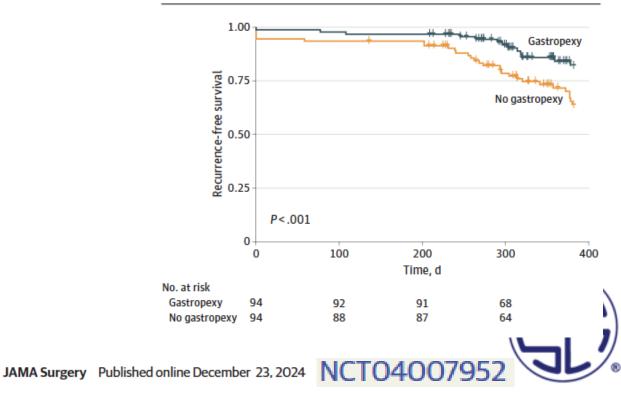
	Number of participants	Tumour histology	Treatment	Overall survival rate (%);* HR (95% Cl)	Progression-free survival or disease-fre survival rate (%);* HR (95% Cl)
Neoadjuvant che	motherapy				
OEO2 ^{cs}	802	Oesophageal squarnous cell carcinoma (247). oesophageal adenocarcinoma (533), undifferentiated or unknown cancer (22)	Neoadjuvant chemotherapy (fluorouracil and platinum) vs surgery	17% vs 23%; 0-84 (0-72-0-98)	NR; NR
JCOG9907**	330	Oesophageal squamous cell carcinoma	Neoadjuvant chemotherapy (fluorouracil and platinum) vs adjuvant chemotherapy (fluorouracil and platinum)	55% vs 43%; 0-73 (0-54-0-99)†	Progression-free survival 44% vs 39%; 0-84 (0-63–1-11)†
Perioperative che	motherapy				
MAGIC	503	Gastro-oesophageal junction (131), gastric cancer (372)	Perioperative chemotherapy (fluorouracil and platinum) vs surgery	36% vs 23%; 0-66 (0-53-0-81)	Progression-free survival NR; 0.75 (0.60-0.93)
FNCLCC- FFCD ^M	224	Oesophageal adenocarcinoma (25), gastro- oesophageal junction (144), gastric cancer (55)	Perioperative chemotherapy (fluorouracil and platinum) vs surgery	38% vs 24%; 0-69 (0-50-0-95)	Disease-free survival 34% vs 19%; 0-65 (0-48–0-89)
FLOT4 ^u	716	Gastro-oesophageal junction (398), gastric cancer (318)	Fluorouracil, leucovorin, oxaliplatin, and docetaxel vs epirubicin, cisplatin, and either fluorouracil or capecitabine	45% vs 36%; 0-77 (0-63-0-94)	Disease-free survival NR; 0.75 (0.62–0.91)
Preoperative cher	noradiotherapy				
CROSS ^{atur}	366	Oesophageal squarnous cell carcinoma (8.4), oesophageal adenocarcinoma (275), undifferentiated cancer (7)	Neoadjuvant chemoradiotherapy (paclitaxel and platinum) vs surgery	38% vs 25%; 0.70 (0.55-0.89)†	Progression-free survival 44% vs 27%; 0-69 (0-52-0-92)
NEOCRTEC5010*	451	Oesophageal squamous cell carcinoma	Neoadjuvant chemoradiotherapy (vinorelbine and platinum) vs surgery	60% vs 49%; 0.73 (0.55-0.97)	Disease-free survival 64% vs 43%; 0-55 (0-40-0-74)
Chemotherapy vs	chemoradiothe	нару			
Neo-AEGI5**	362	Low oesophagus or type I gastro-oesophageal junction (243), type II gastro-oesophageal junction (84), type III gastro-oesophageal junction (29)	Perioperative chemotherapy‡ vs neoadjuvant chemoradiotherapy (pacitaxel and platinum)	55% vs 57%; 1-03 (0-77-1-38)\$	Disease-free survival NR; 0-89 (0-68–1-17)
NeoRes ^{an} ¶	181	Squamous cell carcimona (50), adenocarcinoma (131)	Neoadjuvant chemoradiotherapy vs chemotherapy (fluorouracil and platinum)	49% vs 47%; NRS	Progression-free survival 44% vs 44%; NRs
CMISG1701*	264	Oesophageal squamous cell carcinoma	Neoadjuvant chemoradiotherapy vs chemotherapy (paditaxel and platinum)	64% vs 55%; 0-82 (0-58-1-18)	Progression-free survival 54:3% vs 49:8%; 0:83 (0:59–1:16)
JCOG1109 ⁴⁶	601	Oesophageal squarnous cell carcinoma (591), basal cell cancer (8), oesophageal adenocarcinoma (2)	Neoadjuvant chemoradiotherapy vs chemotherapy (fluorouracil and platinum)	68% vs 63%; 0-84 (0-63-1-12)\$	Progression-free survival 62% vs 48%; 0:77 (0:59-1:01)
JCOG1109#	601	Oesophageal squamous cell carcinoma (591), basal cell cancer (8), oesophageal adenocarcinoma (2)	Neoadjuvant chemotherapy (fluorouracil, platinum, and docetaxel) us chemotherapy (fluorouracil and platinum)	72% vs 63%; 0-68 (0-50-0-92)§	Progression-free survival 59% vs 48%; 0-67 (0-51-0-88)
docetaxel regimen al	ter 2018. 53-year		wal. +Oxaliplatin and fluorouracil or capecitablee before 2018;	and fluotouracil, leucov	orin, oxaliplatin, and

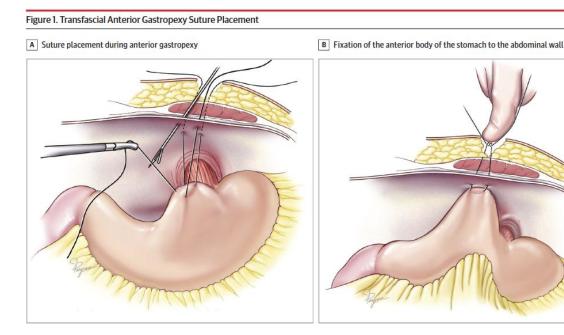
Reviews advances in screening, diagnosis, treatment

Figure: Genomic changes during the development of oesophageal cancer

Desophageal squamous cell carchoma and oesophageal adenocarchoma are the two major histopical types of oesophageal cancer. Oesophageal squamous cell carchoma physically arises in the upper and middle oesophageal squamous cell carchoma predominates near the oesophagogastric junction. Oesophageal squamous cell carchoma develops from malignant transformation of the squamous epithelium due to chronic exposure to tobacco and alcohol, with environmental carchogens inducing DNA damage and somatic mutations. Key drivers include TFS3 mutations, somatic copy number alterations, and inactivation of cell cycle negulators, such as CDWN2A, leading to intraepithelial neoplasia. Genomic instability in intraepithelial neoplasia disrupts key pathways, such as RTK signalling, squamous cell maturation, and Wnit signalling, and cause chromatin nemodelling, which can progress to esophageal squamous cell carchoma. In contrast, esophageal adenocarchoma artises from intestinal metaphasia at the squamocolummar junction due to chronic gastric acid refue, forming Barrett's oesophageal copylatal of gland cells, driven b JFS3 mutations and oncogene alterations (eg. HER2), leads to esophageal adenocarchoma. Oncogene activation and tumour suppressor gene inactivation result in the malignant transformation from Barrett's oesophagus to esophageal adenocarchoma, through dysregulation of the RTK, TGF-B, and Writ signalling pathways and chromatin remodelling. Genomically, esophageal adenocarchoma strass from similarities with gastro- oesophageal adenocarchoma strass from RTK receipor tyrosine kinase.

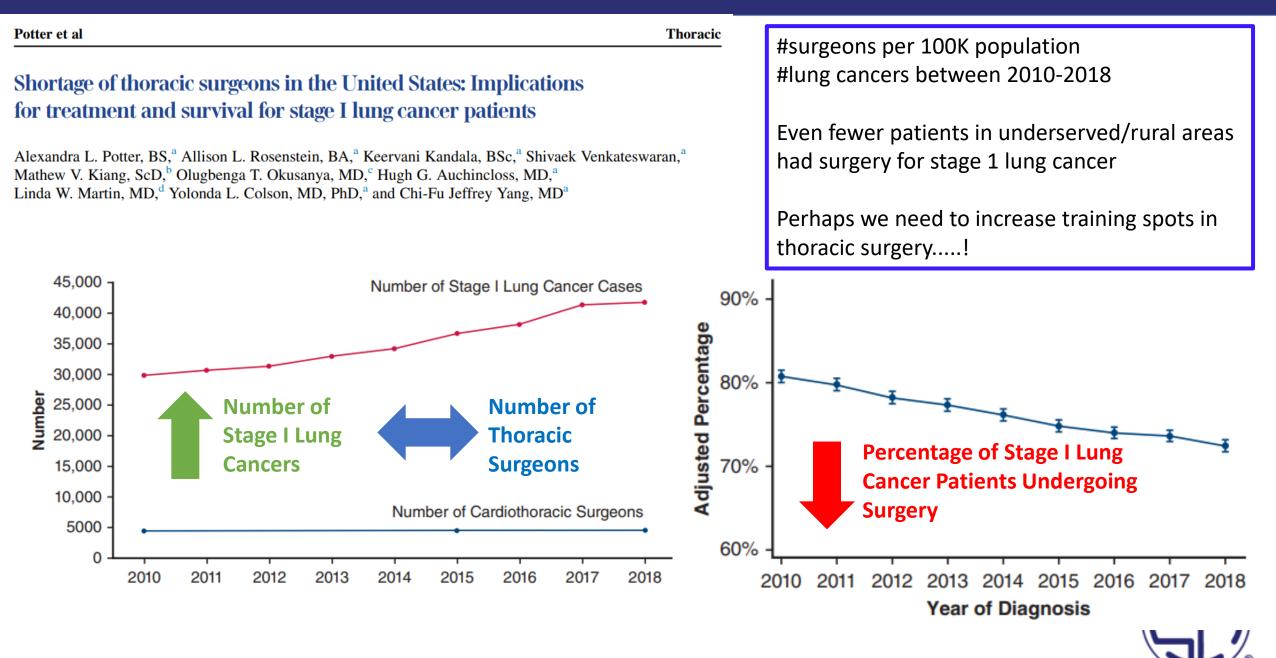
Benign Esophagus Papers


JAMA Surgery | Original Investigation


Anterior Gastropexy for Paraesophageal Hernia Repair A Randomized Clinical Trial

Clayton C. Petro, MD; Ryan C. Ellis, MD; Sara M. Maskal, MD; Sam J. Zolin, MD; Chao Tu, MS; Adele Costanzo, RN; Lucas R. A. Beffa, MD; David M. Krpata, MD; Diya Alaedeen, MD; Ajita S. Prabhu, MD; Benjamin T. Miller, MD; Kevin F. Baier, MD; Alisan Fathalizadeh, MD; John Rodriguez, MD; Michael J. Rosen, MD 240 patients randomized Imaging at 30d and 1y Recurrence at 1 year: 15% with pexy vs 36% without

Figure 3. Kaplan-Meier Plot for Paraoesophageal Hernia Recurrence


transfascial fixation of the anterior body of the stomach near the greater curve to the left upper quadrant of the abdominal wall (using a suture passer) with 2 2-0 polypropylene sutures

Surgical Professional Issues

Thoracic Surgeon Shortage

Potter et al, Journal of Thoracic and Cardiovascular Surgery, 202

Comparison of Postoperative Outcomes Among Patients Treated by Male Versus Female Surgeons Ann Surgery Jan 2025

Meta-analysis of 15 studies evaluating: Mortality Complications readmissions

Given that female surgeons are compensated less and less likely to be promoted than male surgeons,^{17–24} a better understanding of the performance of female surgeons has important clinical and policy implications. In this context, we performed a systematic review and meta-analysis of available evidence comparing patients' postoperative outcomes (mortality, readmission, and complication rates) between female and male surgeons.

Comparison of Postoperative Outcomes Among Patients Treated by Male Versus Female Surgeons

A Systematic Review and Meta-analysis

Natsumi Saka, MD, MSc, PhD,*† Norio Yamamoto, MD,†‡ Jun Watanabe, MD, PhD,†§|| Christopher Wallis, MD, PhD,¶#** Angela Jerath, MSc, MD, BSc,†† Hidehiro Someko, MD,†‡‡ Minoru Hayashi, MD,†§§ Kyosuke Kamijo, MD,†|||| Takashi Ariie, MSc, PhD,†¶¶ Toshiki Kuno, MD, PhD,## Hirotaka Kato, PhD,*** Hodan Mohamud, BSc,¶ Ashton Chang, MD,†† Raj Satkunasivam, MD, MS,†††‡‡‡§§§ and Yusuke Tsugawa, MD, MPH, PhD||||||¶¶⊠

> TABLE 1. Summary of Findings Table on Postoperative Outcomes Anticipated absolute effects No. participants Certainty of the Risk with male Relative effect Risk with female surgeons Outcomes (95% CI) surgeons* (95% CI)† (studies) evidence[‡] Mortality 10 per 1000 9 per 1000 OR 0.93 (0.88-0.97) 5,390,762 Moderate§ (9-10)(8 studies) 78 per 1000 OR 1.20 (0.83-1.74) Readmission 66 per 1000 1,179,107 Very low (55 - 109)(3 studies) Complication 94 per 1000 89 per 1000 OR 0.94 (0.88-1.01) 1,306,128 Very Low (84-95) (8 studies)

Mortality difference most pronounced for

- GENERAL surgeons vs specialty
- Nonelective cases

Ann Surg • Volume 280, Number 6, December 2024

Divorce Among Surgeons and Other Physicians in the US Ann Surgery Dec 2024

Divorce Among Surgeons and Other Physicians in the United Ann Surg • Volume 281, Number 1, January 2025 States

Stephen A. Stearns, MD, *† Alexander R. Farid, MD, *† and Anupam B. Jena, MD, PhD*†‡⊠

TABLE 2. Prevalence of Divorce by Profession

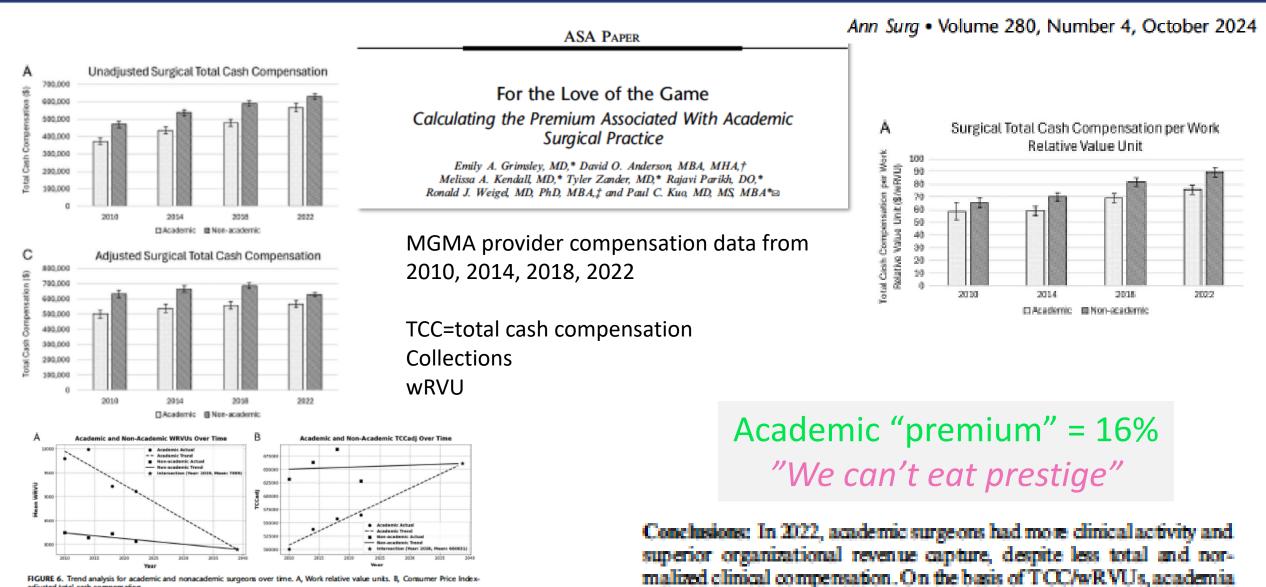
US Census data Included sex, race, income, hours worked/week, #children in household, controlling for age group

3171 surgeons 51660 nonsurgeons

	Physicians (n = 51,660)	Surgeons (n = 3171)	US adults (n = 12.174,210)
Ever divorced, no. (%)	9252 (17.9)	676 (21.3)	3,259,426 (26.8)
Relative risk of divorce, unadjusted (95% CI)	Reference	1.19 (1.11-1.28)	1.49 (1.47-1.52)
Times married, no. (%)			
Never	6824 (13.2)	278 (8.8)	3,142,348 (25.8)
1	38,094 (73.7)	2366 (74.6)	6,734,642 (55.3)
2	5600 (10.8)	451 (14.2)	1,778,278 (14.6)
3	1142 (2.2)	76 (2.4)	518,942 (4.3)
Relative risk of more than one marriage, unadjusted (95% CI)	Reference	1.27 (1.17-1.38)	1.45 (1.41-1.48)
Age at time of most recent marriage, y (mean)	28.6 (8.7)	29.3 (8.9)	27.6 (10.6)

TABLE 4. Adjusted Odds of Divorce Among Surgeons Compared With Nonsurgeon Physicians, by Sex and Race Subgroups

Subgroup	Adjusted odds ratio of divorce among surgeons compared with nonsurgeon physicians (95% CI
Sex	
Male	1.26 (1.11–1.42)
Female	1.18 (0.91-1.53)
Race (%)	
White	1.22 (1.09–1.38)
Black	1.00 (0.49-2.06)
Asian	1.55 (1.06-2.26)
Other	0.81 (0.49–1.33)


The table presents the odds ratio of divorce among surgeons compared with nonsurgeon physicians by sex and race subgroups, adjusting for age, age at the time of most recent marriage, income, hours worked per week, and the number of children in the household. In subgroup analysis by physician sex, race was additionally adjusted for and similarly, in subgroup analysis by physician race, sex was additionally adjusted for.

Conclusions: Both surgeons and physicians have lower divorce prevalence than the general population. Surgeons exhibit higher prevalence of divorce compared with nonsurgeon physicians, with measured demographic and work characteristics insufficient to explain this difference.

For the Love of the Game Ann Surgery Dec 2024

charges a premium of 16% over nonacademic surgery. However, trend

analysis suggests that TCC will converge within the next 20 years.

FIGURE 6. Trend analysis for academic and nonacademic surgeons over time. A, Work relative value units. B, Consumer Price Indexadjusted total cash compensation.

Academic vs Private RVU and pay should converge by 2038

Folder with all slides, papers

Enjoy the meeting! @LindaMThoracic linda.martin@uvahealth.org

