STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia The Society of Thoracic Surgeons

Hemodynamic Results of an Algorithmic **Three-Pronged Approach to Bicuspid Aortic** Valve Repair

Mary A. Siki, BS, Andreas Habertheuer, MD, PhD, Prashanth Vallabhajosyula, MD, MS, Caroline Komlo, BS, Melanie Freas, DNP, CRNP, Rita K. Milewski, MD, PhD, Nimesh D. Desai, MD, PhD, Wilson Y. Szeto, MD, Joseph E. Bavaria, MD

Decision making in BAV repair: the Algorithm

- Nuanced and complex
 - The decision regarding which procedure to perform is influenced by many variables.
- Show the results of our center's decision making approach to BAV repair for aortic insufficiency and why we choose the following options:
 - 1. Valve Sparing Root Reimplantation (VSRR)
 - 2. External Subannular Aortic Ring (ESAR)
 - 3. Subcommissural Annuloplasty (SCA)
 - 4. Abort to AVR or Bentall procedure

Methods

- A retrospective review was performed of 144 patients with BAV undergoing primary valve repair from January 1, 2003 to March 31, 2018.
 - VSRR (n=71) was performed in patients with aneurysmal aortic roots with or without aortic insufficiency (AI)
 - ESAR (n=22) was performed in patients with AI and aortic annulus >27mm without aortic root dilatation.
 - SCA (n=51) was performed in patients with AI and aortic annulus ≤27mm without aortic root dilatation.
- Primary endpoints of freedom from AI >2+ and freedom from aortic valve reoperation were analyzed using Kaplan-Meier analysis.

Demographics

	VSRR (n=71)
Age	44.7 ± 12.6
Male	61 (85.9)
Diabetes	7 (9.9)
HTN	36 (50.7)
CAD	9 (12.7)
LVEF < 50%	12 (16.9)
Preoperative AI > 2+	26 (36.6)
Pre-op LVEDd (cm)	5.6 ± 1.0
Annular Diameter (mm)	30.2 ± 3.8
SOV diameter (cm)	4.7 ± 5.3
STJ diameter (cm)	3.9 ± 7.1

ESAR (n=22)	SCA (n=51)	P-value
41.3 ± 10.7	43.3 ± 13.5	0.52
17 (77.3)	45 (88.2)	0.47
0 (0.0)	3 (5.9)	0.30
2 (9.1)	27 (52.9)	0.003
1 (4.6)	3 (5.9)	0.52
1 (4.6)	6 (11.8)	0.001
16 (72.7)	30 (58.8)	0.01
5.5 ± 0.9	5.4 ± 0.8	0.60
29.6 ± 3.7	28.1 ± 3.0	0.03
3.6 ± 4.4	3.7 ± 4.4	<0.0001
3.3 ± 6.1	3.3 ± 4.9	<0.0001

Perioperative outcomes

	VSRR (n=71)	ESAR (n=22)	SCA (n=51)	P-value
Cardiopulmonary bypass (min)	274.6 ± 56.8	185.4 ± 46.0	143.1 ± 39.6	<0.001
Crossclamp (min)	223.8 ± 47.5	136.7 ± 37.5	94.4 ± 30.3	<0.001
30-day mortality	1 (1.4)	0 (0.0)	0 (0.0)	0.75
Stroke	0 (0.0)	0 (0.0)	0 (0.0)	1.00
Annular reduction (%)	15.4 ± 8.0	19.1 ± 7.3	12.7 ± 6.6	0.01
Concomitant ascending replacement	N/A	7 (31.8)	24 (46.2)	0.20
Concomitant hemiarch or arch procedure	41 (57.8)	7 (31.8)	23 (44.2)	0.12
MG (mmHg, post-op TTE)	6.5 ± 3.6	10.4 ± 5.1	12.7 ± 4.9	<0.001
PG (mmHg, post-op TTE)	12.1 ± 6.4	18.0 ± 8.0	23.7 ± 9.2	<0.001

STS/EACTS Latin America Cardiovascular Surgery Conference 2018

Long-term Outcomes

Freedom from AI > 2+

Freedom from Re-operation

Conclusions

- We have an algorithm and an approach to BAV repair in patients with/without root aneurysm
 - Root diameter > 40-45mm
 - Annular diameter > 27 mm
 - Decision towards AVR/Bentall in calcification and extreme fenestration
- Decision making based on this algorithm results in:
 - 93.7% freedom from AI > 2+ in VSRR group (10 years)
 - 92.9% freedom from AI > 2+ in ESAR group (5 years)
 - 100% freedom from AI > 2+ in SCA group (5 years) after algorithm change in 2013
- Reoperation in all groups is quite low
- Limitations:
 - We changed our algorithm significantly in 2013 based on review of our own SCA data (Vallabhajosyula P et al., Ann Thorac Surg 2014)
- We believe this to be a reasonable approach to BAV repair

STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia The Society of Thoracic Surgeons EACTS

THANK YOU

444

14990