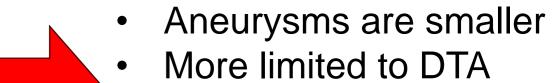
STS/EACTS Latin America Cardiovascular Surgery Conference

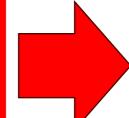
November 15-17, 2018
Hilton Cartagena | Cartagena, Colombia

Open Repair of Acute Complicated Type B Aortic Dissection: Predictable outcomes when TEVAR is ill-advised



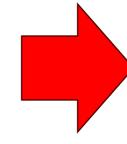
Acute Complicated Type B Aortic Dissection (ACTBAD)

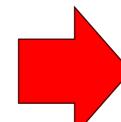
- TEVAR is now the preferred therapy for ACTBAD
 - Improves true lumen antegrade flow by covering primary tear
- Open repair is historically associated with higher mortality compared to TEVAR
 - Mortality 33.9% vs 10.6% in the IRAD database
- Anatomic complexity and limitations may sometimes discourage an endovascular approach
- We sought to analyze our experience with open repair in this high risk cohort


Preoperative Data	Acute Dissection (n=66)	Other (n=754)	P- value
Age (median, IQR)	68.50 [51.25, 73.00]	68.00 [58.00, 75.00]	0.316
Males	39 (59.1)	447 (59.3)	0.976
Smoking	50 (75.8)	574 (76.1)	0.946
Previous coronary revascularization*	7 (10.6)	156 (20.7)	0.049
Hypertension	64 (97.0)	724 (96.0)	0.703
Chronic pulmonary disease	28 (42.4)	306 (40.6)	0.770
Previous stroke	10 (15.1)	118 (15.6)	0.955
Peripheral vascular disease	18 (27.3)	193 (25.6)	0.765
Diabetes	5 (7.6)	74 (9.8)	0.578
Renal failure	20 (30.3)	222 (29.4)	0.883
Connective tissue disorder	12 (18.2)	80 (10.6)	0.211
Aneurysm size, cm (median, IQR)*	6.05 [5.30, 6.88]	6.70 [6.10, 7.50]	<0.001
Descending thoracic aneurysm*	29 (43.9)	225 (29.8)	0.018
Thoracoabdominal aneurysm*	37 (56.1)	529 (70.2)	0.018
Shock*	7 (10.6)	23 (3.1)	0.002
Emergent operation*	58 (87.9)	202 (26.8)	< 0.001
Preoperative spinal cord lesions*	3 (4.5)	8 (1.0)	0.016

 Baseline medical comorbidities are similar

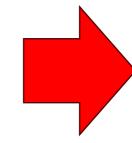
More shock and spinal ischemia

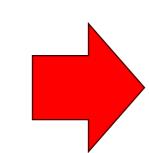

Intraoperative Data			
Intercostal re-implantation*	17 (25.8)	320 (42.4 <u>)</u>	0.008
Partial bypass*	31 (47.0)	199 (26.4)	< 0.001
Clamp and sew*	29 (43.9)	487 (64.6)	0.001
Circulatory arrest	6 (9.1)	62 (8.2)	0.806
Renal perfusion	8 (12.2)	164 (21.8)	0.065
Spinal drainage	56 (84.8)	639 (84.7)	0.998


Partial bypass is the primary technique Less intercostal re-

Less intercostal reimplantation and renal/visceral perfusion

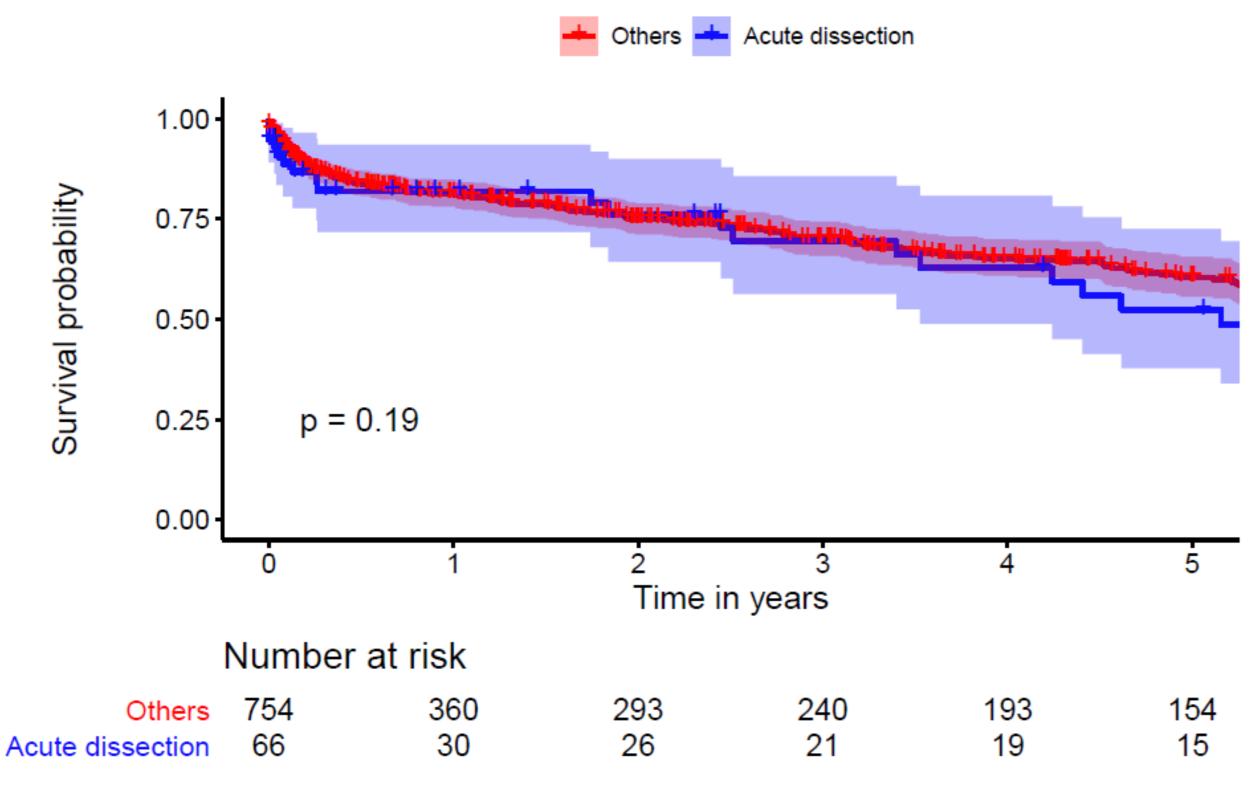
Postoperative Data	Acute Dissection (n=66)	Other (n=754)	P- value
Operative mortality	5 (7.6)	39 (5.2)	0.414
Myocardial infarction	1 (1.5)	4 (0.5)	0.320
Stroke	0 (0.0)	6 (0.8)	0.466
Spinal cord ischemia	1 (1.5)	19 (2.5)	0.620
Tracheostomy	5 (7.6)	53 (7.1)	0.868
Renal failure requiring dialysis	2 (3.0)	40 (5.3)	0.421
Reoperation for bleeding	3 (4.5)	17 (2.3)	0.252

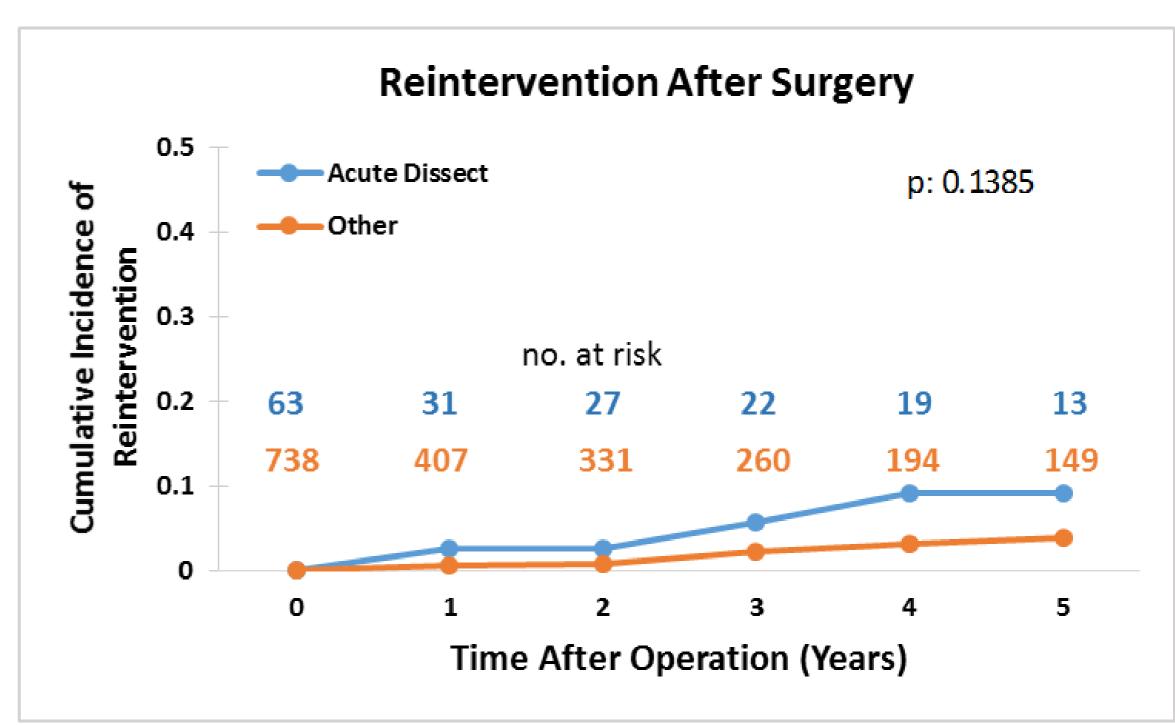

 Operative mortality similar to chronic dissection/atherosclerotic


Incidence of other MAE's was similar

 Mainly consisting of pulmonary and renal failure

Logistic Regression Analysis	OR (95% CI)	P Value
Major adverse events		
Female	1.729 (1.014-2.689)	0.05
Preoperative hemodialysis	6.695 (2.195-20.594)	0.001
Aneurysm extent I	Reference	
Aneurysm extent II	2.094 (1.009-4.465)	0.039
Urgent/emergent operation	2.831 (1.286-3.941)	0.001
FEV1 ≤ 50	2.675 (1.531-4.909)	<.001
ACTBAD	0.548 (0.247-1.306)	0.223




 Independent predictors of MAE were similar to prior studies

ACTBAD was <u>NOT</u> a predictor of major adverse events

5-year Survival and Re-intervention Rate

Cum. Incidence	3-Year (95% CI)	5-Year (95% CI)
Acute Dissect	5.8%(0.9-17.2%)	9.1%(2.2-22.1%)
Other	2.2%(1.1-4.0%)	3.9%(2.2-6.4%)

Conclusions

 Open repair of ACTBAD can be performed with outcomes comparable to published endovascular series

 The need for re-intervention and late survival compare favorably with TEVAR

• In patients with anatomy unsuitable for TEVAR, surgical repair in a high-volume open repair center should be considered

STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia

