STS/EACTS Latin America Cardiovascular Surgery Conference

November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia

Christian Bermudez MD.

Associate Professor Director Thoracic Transplantation Division Cardiac Surgery Department of Surgery University of Pennsylvania

Conflict of Interest

No Financial Disclosures.

Interaction RV and LVAD support

INTERMACS definition of RVF

• Symptoms and Signs of persistent RVF following LVAD implantation characterized by:

Elevated CVP documented by:

- Right atrial pressure >16 mmHg on right heart catheterization
- Significantly dilated inferior vena cava with no inspiratory variation on echocardiography
- Elevated jugular venous pressure
- Manifestations of elevated CVP characterized by:
- Peripheral edema(>2+)
- Ascites or hepatomegaly on exam or diagnostic imaging
- Laboratory evidence of worsening hepatic (total bilirubin >2.0 mg/dl) or renal dysfunction (creatinine >2.0 mg/dl)

Severity of Post-op RV Failure

MILD

 RHF requiring IV inotropes or vasodilators and/or iNO used for less than 7 days post-implantation

MODERATE

 Persisting RHF requiring IV inotropes or vasodilators and/or iNO used for > 7 days post-implantation but ≤ 14 days post-implantation

SEVERE

Persisting RHF requiring IV inotropes or vasodilators and/or iNO used for > 14 days post-implantation or implantation of MCS device for RV support at any time.
 2.6 fold increase in mortality at 6 months

Clinical outcomes associated with INTERMACS-defined right heart failure after left ventricular assist device implantation

306 pt with less than severe RVD and 139 with severe RVD, St Louis

Severe RVD has profound effect in survival and clinical outcomes

Larue JHLT 2017

Right Ventricular Failure

- 9-44% incidence in VAD eligible
- 5-20% post-LVAD incidence
- RVF:
 - Increased mortality
 - Multi-system organ failure
 - Coagulopathy
 - Hemorrhage
 - Pulmonary failure
 - Thromboembolic complications

Circ Cardiovasc Imaging 2014
Kalogeropoulos JHLT 2015
Kormos JTCVS 2010
Genovese Ann Thor Surg 2009
Fitzpatrick JHLT 2008
Morgan Ann Thor Surg 2004
Slaughter JHLT 2010

Surgical RVAD's in the US: Eighth INTERMACS Reports

J Heart LungTransplant 2017;36:1080–1086

RV Risk Assessment

- Risk Scores:
 - Michigan
 - Penn BIVAD
 - Penn CRITT
 - Berlin
 - Utah
 - U. Pitt
 - HM II

- Clinical: MV,RF, LVD, INTMCS
- Hemodynamics: CVP, RVSWI, CVP:PCWP, PVR, TPG, PA pressure
- Echo: RV Failure, TAPSE, TR, 3D TEE

Matthews JC JACC 2009
Fitzpatrick JR JHLT 2008
Drakos SGAm J Card 2010
Atluri P Ann Thor Surg 2014
Potapov JHLT 2008
Wang Y JHLT 2012
Kormos JTCVS 2010
Kiernan J Card Failure 2015

Clinical Tools for Assessing Risk for Right Ventricular Failure or Mortality After LVAD Since 2008

	Publication		Devices			
First author	date	No.	implanted	Components of score ^a	Definition of RV failure	Major findings
Fitzpatrick ⁵	2008	167	Pulsatile 98% Continuous 2%	Cardiac index RV stroke work index Severe RV dysfunction Preoperative creatinine Previous cardiac surgery	Need for biventricular support	Sensitivity of 83% and specificity of 80% to predict successful LVAD support using a cutoff of 50 points.
Matthews ⁸	2008	197	Pulsatile 86% Continuous 14%	Vasopressor requirement Aspartate aminotransferase Bilirubin Creatinine	Need for post-operative intravenous inotrope support for > 14 days, inhaled nitric oxide for > 48 h, right-sided circulatory support, or hospital discharge on an inotrope	
Pota pov ¹⁰	2008	54	Pulsatile 31% Continuous 69%	Tricuspid incompetence RV end-diastolic diameter > 35 mm RV ejection fraction <30% Right atrial dimension <50 mm Short-/long-axis ratio > 0.6	Within 48 hours: RVAD implant or 2 of the following: 1. Mean arterial pressure <55 mmHg 2. CVP > 16 mmHg 3. Mixed venous saturation < 55% 4. Cardiac index < 2 liters/min/m² 5. Inotropic support > 20 units	OR for RV failure after LVAD implantation for Grade III or IV tricuspid regurgitation was 4.7 ($p=0.012$)
Puwanant ¹¹	2008	33	Pulsatile 45% Continuous 55%	Tricuspid annular plane motion	Need for inotropic support or pulmonary vasodilators for >14 days post-operatively	A cutoff of 7.5 mm yields a sensitivity of 48%, specificity of 91%, and area under the ROC curve of 0.81
Drakos ⁴	2011	175	Pulsatile 86% Continuous 14%	1. Preoperative need for IABP 2. Increased PVR 3. Destination Therapy 4. Inotrope dependency 5. Obesity 6. ACE inhibitor and/or angiotensin II receptor blocker use 7. β-blocker use	Need for inhaled nitric oxide for > 48 hours, IV inotropes > 14 days and/or RV device insertion	Area under the ROC curve to predict RV failure was 0.743 ± 0.037
Kormos ⁹	2011	484	Continuous 100%	CVP Need for preoperative vent BUN >39 mg/dl	Need for RVAD, continuous inotropic support for at least 14 days or late inotropic support starting 14 days after implantation	The following were associated with RV failure after multivariate analysis: 1. CVP/pulmonary capillary wedge pressure ratio > 0.63 (OR, 2.3; 95% CI, 1.2-4.3) 2. Need for preoperative vent (OR, 5.5; 95% CI, 2.3-13.2) 3. BUN > 39 mg/dl (OR, 2.1; 95% CI, 1.1-4.1)

					White tell property and a fill fill i	
Kukucka 12	2011	115	Pulsatile 56% Continuous 44%	 RV-to-LV end-diastolic diameter (R/L) ratio obtained from transesophageal echo 	1. Mean arterial pressure <55 mmHg 2. CVP pressure > 16 mm Hg 3. Mixed venous saturation < 55% 4. Cardiac index < 2 liters/min/m ²	Using a cutoff of R/L ratio > 0.72 yielded an area under the ROC curve of 0.742
Grant ¹³	2012	117	Continuous 100%	1. RV free wall peak longitudinal strain	 Inotropic support >20 units. Unplanned insertion of an RVAD or the use of an intravenous inotrope for > 14 days post-operatively 	A peak strain cutoff of -9.6% predicted RV failure with sensitivity of 68% and specificity of 76% with an are under the ROC curve of 0.70. When added to the Michigan risk score, the area under the ROC curve improved from 0.68 to 0.77
Kato ¹⁴	2012	111	Pulsatile 29% Continuous 71%	LVEDD Left atrial diameter/ LVEDD Total bilirubin Albumin RV stroke work index	Need for inhaled nitric oxide for > 48 hours, IV inotropes > 14 days, and/or RVAD insertion	Using a cutoff of 6 points provided a sensitivity of 68.69 specificity of 76.3%, and area under the ROC curve of 0.789
Atluri ¹⁵	2013	167	Pulsatile 51% Continuous 49%	CVP > 15 mm Hg Severe RV dysfunction Preoperative intubation Severe tricuspid regurgitation Heart rate > 100 beats/ min	Need for biventricular support	The components of the risk score were associated with the following odds of RV failure: 1. CVP > 15 mm Hg (OR, 2.0; 95% CI, 0.9-4.2) 2. Severe RV dysfunction (OR, 4.1; 95% CI, 1.4-12.4) 3. Preoperative intubation (OR, 4.3; 95% CI, 1.9-9.6) 4. Severe tricuspid regurgitation (OR, 3.7; 95% CI, 1.4-12.4) 5. Heart rate > 100 beats/min (OR, 2.0; 95% CI, 0.9-4.3)
Vivo ¹⁶	2013		Pulsatile 15% Continuous 85%	 RV-to-LV end-diastolic diameter (R/L) ratio obtained from transthoracic echo 	Need of RVAD or ≥ 14 consecutive days of inotropic support ≤ 30 days	Using a R/L ratio cutoff of 0.75 yielded an area under the ROC curve of 0.68
Kiernan ¹⁷	2015	24	Continuous 100%	RV end-systolic volume index RV end-diastolic volume index	Need of RVAD or ≥ 14 consecutive days of inotropic support	 RV end-systolic volume index >47 ml/m² had a sensitivity of 83%, specificity or 93%, and area under ROC curve of 0.88 (95% CI, 0.69-0.97; p < 0.0001) RV end-diastolic volume index >61 ml/m² had a sensitivity of 92%, specificity of 79%, and area under ROC curve of 0.90 (95% CI, 0.72-0.98; p < 0.0001)

J HeartLungTransplant 2016;35:283–293

EUROMACS Right Sided-HF Risk Score

ACHA

Risk score components:

9.5-point risk score (5-item)

- Severe RV dysfunction on semi quantitative echocardiography (2 points)
- Ratio of RA to PCWP ≥ 0.54 (2 points)
- INTERMACS class 1 through 3 (2 points)
- Need of ≥3 inotropic agents (2.5 points)
- Hemoglobin ≤10 g/dL (1 point).

0-2: Low risk

2.5-5: Intermediate risk

> 4: High risk

Soliman et al Circulation. 2018;137:891-906.

Includes only the 3 most used CF pumps (HMII, HW, HMIII)

How do we prevent and manage acute perioperative RVF....

Pre-operative Optimization RV

- Diuresis (Lasix Drip/ CVVH, target CVP<15 mmhg)
- Preoperative Inotropic Support (Milrinone preferred over Dobutamine).
- IABP

RV Pre- and Post-Optimization

Preoperative IABP

Intra-Aortic Balloon Pump Use Before Left Ventricular Assist Device Implantation: Insights From the INTERMACS Registry

Intra-Aortic Balloon Pump Use Before LVAD				
Implantation				

	No (n = 2013)	Yes (n = 433)	p
Right ventricular function, No. (%)			<0.001
Normal	327 (16.2)	51 (11.8)	
Mild dysfunction	298 (14.8)	60 (13.9)	
Moderate dysfunction	314 (15.6)	80 (18.5)	
Severe dysfunction	125 (6.2)	48 (11.1)	
Unknown	949 (47.1)	194 (44.8)	
Cardiac arrest this hospitalization	11 (0.5)	14 (3.2)	< 0.001
Support within 48 hours after implant, No. (%)	• •		
Inotropes	1350 (67.1)	280 (64.7)	0.34
Mechanical ventilation	29 (1.4)	15 (3.5)	0.004

Cumulative incidence of right heart failure, hepatic dysfunction, renal dysfunction, or death

Despite markers of higher risk in patients with IABP use, we found no significant difference in 30 day outcomes compared to those without. The results suggest that IABP use may mitigate risk of early postoperative adverse outcomes in select patients.

Intra-and Perioperative Strategies to Prevent/Treat RV Failure

Surgical Strategies

- TV Repair
- Minimize CPB
- Avoid bleeding /prevent transfusions
- Delayed chest closure
- Adjust LVAd flow (avoid septal shift)
- RVAD (early implantation)

Perioperative management

- Nitric Oxide or inhaled prostacyclin
- TEE monitoring of RVF
- Inotropic support to Maintain systolic BP and avoid vasodilation
 - Milrinone
 - Epinephrine
 - Isoproterenol
- Ventilator strategies
 - Maintain O2 and reduce CO2 (avoid hypercarbia)

Right heart failure and benefits of adjuvant tricuspid valve repair in patients undergoing left ventricular assist device implantation

Variables	TVR (n = 69)	No TVR (n = 72)	P-value
Duration of heart failure (years)	4.4 ± 5.1	5.3 ± 5.4	0.405
On ventilator	13 (18%)	23 (32%)	0.101
IABP support	41 (58%)	46 (64%)	0.709
On VA-ECMO	13 (16%)	22 (32%)	0.157
INTERMACS (Level 3)	24 (42%)	30 (35%)	0.504
Total bilirubin (mg/dl)	2.2 ± 1.5	2.2 ± 2.7	0.86
Creatinine (mg/dl)	1.6 ± 1.1	1.1 ± 0.6	0.006
LVDd (mm)	74 ± 12	73 ± 11	0.815
LVDs (mm)	67 ± 12	66 ± 12	0.645
Ejection fraction (%)	16 ± 8	17 ± 8	0.892
TR (Grades 0-4)	2.6 ± 1.0	1.3 ± 0.8	< 0.001
Cardiac index	2.0 ± 0.5	2.0 ± 0.5	0.717
Mean PAP (mmHg)	33 ± 10	31 ± 10	0.392
PCWP (mmHg)	24 ± 8	23 ± 9	0.738
CVP (mmHg)	12 ± 8	9 ± 6	0.006
CVP/PCWP	0.54 ± 0.35	0.38 ± 0.19	0.003
RVSWI	0.45 ± 0.27	0.46 ± 0.28	0.94
Fibrosis (Scores 0-3)	2.4 ± 0.7	2.1 ± 0.8	0.009

141 LVAD /69 TVr

Table 2: Surgical procedures				
Surgical procedures	RVF (n = 27)	No RVF (n = 114)	P-value	
LVAD implantation				
Pulsatile	26	93	0.109	
Continuous flow	1	21		
RVAD-ECMO	3			
TVR	18 (67%)	51 (45%)	0.067	
Ring annuloplasty	14 (78%)	34 (67%)		
Flexible ring	11 (61%)	21 (41%)		
Semirigid ring	3 (17%)	13 (25%)		
DeVega method	4 (22%)	17 (33%)		

Right heart failure and benefits of adjuvant tricuspid valve repair in patients undergoing left ventricular assist device implantation

141 LVAD /69 TVR

Tricuspid valve repair is a useful and durable adjuvant procedure for restoring deteriorated right ventricular function in patients requiring LVAD implantation.

Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: A Society of Thoracic Surgeons database analysis.

Table 5 Sensitivity Analysis Comparing Results from Traditional Multivariate Regression Analysis to Inverse Probability Weighting Using Conditional Logistic Regression

		Before IPW adjustment		After IPW adjustment	
Variables	No. (events/total)	OR for TVP (95% CI)	p-value	OR for TVP (95% CI)	<i>p</i> -value
Operative mortality	224/2,196	1.22 (0.83-1.80)	0.3050	0.95 (0.61-1.47)	0.8177
Reoperation					
Any	710/2,189	1.39 (1.08-1.79)	0.0099	1.46 (1.11-1.93)	0.0076
Bleeding or tamponade	350/2,189	1.67 (1.22-2.27)	0.0012	1.93 (1.37-2.72)	0.0002
RVAD insertion	99/2,196	0.94 (0.54-1.64)	0.8170	0.69 (0.36-1.32)	0.2631
Prolonged ventilation	1,462/2,189	1.48 (1.13-1.940)	0.0039	1.40 (1.04-1.89)	0.0262
New renal failure	214/1,851	1.66 (1.12-2.48)	0.0121	1.93 (1.37-2.72)	0.0002
Stroke	67 /2 . 188	1.25 (0.63-2.50)	0.5227	1.22 (0.57-2.62)	0.6045

2196 cf LVADs, 588 (27%) LVAD-TVr (TVr in mod-severe TR, annulus >40 mm)

No difference in RVAD need or mortality

TVP was associated with an increased risk for postoperative renal failure (RR,1.53;95%CI,1.13–2.08; p =0.0061), dialysis (RR,1.49;95%CI,1.03–2.15; p = 0.0339), reoperation (RR,1.24;95%CI,1.07–1.45; p = 0.0056), greater total transfusion requirement (RR,1.03;95%CI,1.01–1.05; p = 0.0013), and hospital length of stay >21 days (RR,1.29;95%CI,1.16–1.43; p o 0.0001). Time on the ventilator and intensive care unit length of stay were also significantly prolonged for the LVAD -pTVP group.

The Journal of Heart and Lung Transplantation, Vol 33, No 6, June 2014

Continuous Flow Left Ventricular Assist Device Implant Significantly ImprovesPulmonary Hypertension, Right Ventricular Contractility, and Tricuspid Valve Competence

TABLE 3

Mean Preoperative, Immediate Postoperative, and Follow-Up Right Ventricular Dysfunction and Tricuspid Regurgitation Following Continuous Flow Left Ventricular Assist Device Implant

	Pre- Operative (n = 114)	Post- Operative (n = 114)	3-Month Follow-Up (n = 71)	6-Month Follow-Up (n = 63)	12-Month Follow-Up (n = 52)	P = (Post- Op vs. Pre-Op)
Right ventricular dysfunction (all patients)	2.09 ± 0.64	1.65 ± 0.71	1.67 ± 0.77	1.36±0.88	1.64±0.79	0.001
Right ventricular dysfunction (pre-op moderate or severe, n = 58)	2.46 ± 0.49	1.89 ± 0.55	1.79±0.74	1.48±0.80	1.75±0.80	<0.00001
Tricuspid regurgitation (all patients)	1.48 ± 0.75	1.24 ± 0.50	1.05 ± 0.53	1.04 ± 0.42	0.75 ± 0.58	0.001
Tricuspid regurgitation (pre-op moderate or severe, n = 59)	2.17 ± 0.28	1.38 ± 0.60	1.14±0.61	1.17 ± 0.47	0.71 ± 0.57	<0.000001

There was an immediate improvement in TR grade and RV function following LVAD implant, which was sustained long term

Conclusion: Continuous flow LVAD implant improves pulmonary hypertension, RV function, and tricuspid regurgitation. TR may be managed non-operatively during CF LVAD implant.

J CARD SURG ATLURI, ET AL. 771 2013;28:770–775

Inhaled nitric oxide after left ventricular assist device implantation: A prospective, randomized, double-blind, multicenter, placebo-controlled trial

105 patients randomized to receive 40ppm NO vs placebo at time of weaning from bypass

Use of iNO at 40 ppm given before separation from CPB did not reach statistical significance for the primary end point of reduction in RVD incidence. No statistically significant difference was found for secondary variables, including time on mechanical ventilation, ICU or hospital stay, and the need for RVAD after LVAD placement.

Outcome Measure	iNO	Placebo	<i>p-v</i> alue
Patients meeting RVD criteria ≤48 hours			0.330
No. of total (%)	7/73 (9.6)	12/77 (15.6)	
95% CI	2.8-16.3	7.5-23.7	
Males, No. (%)	7/64 (10.9)	7/65 (10.8)	>0.99
Females, No. (%)	0/9 (0.0)	5/12 (41.7)	0.045
PVRI <270.5 dyne/sec/cm ⁻⁵	6/51 (11.8)	6/48 (12.5)	>0.99
PVRI ≥270.5 dyne/sec/cm ⁻⁵	1/7 (14.3)	5/7 (71.4)	0.103
Days on mechanical ventilation ^a	70	67	0.077
Mean (SD)	5.37 (7.72)	11.10 (24.81)	
Median (range)	2.0 (1-30)	3.0 (0-160)	
No. of ICU days ^b	60	58	0.630
Mean (SD)	20.52 (32.31)	19.90 (24.38)	
Median (range)	11.0 (3-194)	9.0 (3-115)	
No. of total hospital days ^c	58	58	0.979
Mean (SD)	40.57 (32.19)	40.76 (29.41)	
Median (range)	32.0 (11-194)	31.5 (10-156)	
Quantity of blood products used	73	77	
Mean, ml (SD)	4,232 (4675)	4,885 (7760)	0.226
Patients requiring PRT, No. (%)d	10/71 (14.1)	8/70 (11.4)	0.637
Non-survival at Day 28, No. (%)	8/71 (11.3)	8/70 (11.4)	0.924
Patients needing RVAD by Day 28, No. (%)	4/71 (5.6)	7/70 (10.0)	0.468

J Heart Lung Transplant 2011;30:870–8

Surgical Temporary Mechanical RV Support Options

Sternotomy/Thoracotomy

Percutaneous Temporary RV Support Options

^{*}FDA Approval for RV support

^{**} FDA Approval for Circulatory Support 6h

^{***} FDA Approval for Circulatory Support 6h

Early, Planned Institution of Biventricular Mechanical Circulatory Support Results in Improved Outcomes Compared to Delayed Conversion of LVAD to BiVAD

167 LVAD alone ,71 Planned BIVAD and 28 delayed BIVAD (PVADS) Similar patient characteristics in the BIVAD group

When patients at risk for isolated LVAD support failure are identified, proceeding directly to BiVAD implantation is advised, as early institution of biventricular support results in dramatic improvement in survival

J Thorac Cardiovasc Surg. 2009 April; 137(4): 971–977

Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion.

Clinical experience with Centrimag temporary right ventricular mechanical circulatory support

TABLE 2. Adverse events and causes of death in study patients

Variable	PCCS (n = 13), (%)	CTx (n = 25), (%)	LVAD (n = 42), (%)	P value
Adverse event				
Reoperation for bleeding	3 (23)	9 (36)	10 (24)	.52
Major infection	8 (62)	13 (52)	23 (55)	.85
Arrhythmia	5 (38)	10 (40)	21 (50)	.64
Stroke/encephalopathy	1(8)	3 (12)	9 (21)	54
Air embolism	0 (0)	0 (0)	1 (2)	.63
Causes of early death				
MSOF/sepsis	1 (8)	5 (20)	3 (7)	.25
LV failure	1 (8)	1 (4)	0 (0)	.22
Stroke	0 (0)	0 (0)	0 (0)	_
Care withdrawn	5 (38)	1 (4)	4 (10)	.01
Causes of late death				
Stroke	0 (0)	0 (0)	0 (0)	_
Care withdrawn	1 (8)	1 (4)	4 (10)	.71

Risk factors for weaning RVAD

Centrimag Central cann.

Multivariate analysis			
PCCS indication	0.161	.007	0.043-0.60
Female sex	0.313	.056	0.095-1.03

J.Thorac Cardiovasc Surg 2018;156:1885-91

Clinical experience with temporary right ventricular mechanical circulatory support

Survival of Centrimag RVAD by Indication, Era and Timing of Implantation

Conclusions: Temporary right ventricular mechanical support remains an effective treatment strategy after left ventricular assist device placement with immediate support resulting in superior short-term survival. Caution should be applied in postcardiotomy cardiogenic shock when weaning and survival are poor. Overall survival outcomes have remained relatively static over time.

J.Thorac Cardiovasc Surg 2018;156:1885-91

TandemHeart RVAD (TH pump and Dual Lumen Cannula)

Tandem Heart Pump

Placement under fluoroscopy using One flow directed PA catheter and COOK®.035 Lunderquist® guidewire used to advance the Cannula

PROTEK-DUO Cannula 29 and 31 FR

Outcomes with the Tandem Protek Duo Dual-Lumen Percutaneous Right Ventricular Assist Device

Table 1. Demographics and Baseline Characteristics

Factor	Value ± SD
Age	56.3±8
Gender, male	13 pts (76%)
Diabetes?	12 pts (71%)
Smoker	3 pts (18%)
Ischemic etiology of CMP	5 pts (29%)
Hypertension	11 pts (65%)
Serum sodium	133.9±3.7
GFR	60.8 ± 37
Albumin	2.4 ± 0.4
ALT	37.6 ± 29.2
Total bilirubin	1.6 ± 0.9
Wt (kg)	· 98.7±18.6
LVEF	17.5 ± 16.5
RA pressure	21.6±6.9
PA systolic	52 ± 14.3
PA diastolic	27.8±7.1
PA mean	35.1 ± 8.5
PCWP	25.3 ± 6.8
PA saturation	53.1 ± 12.6
Cardiac output	4.8±1.3
Cardiac index	2.2 ± 0.7
Outcome weaned	4 (23%)
Outcome: VAD	6 pts (35%)
Outcome: Death	7 pts (41%)
Days of TPD support	10.5±6.5

Two-center experience using the TPD in 17 patients with right ventricular(RV) failure (12 of whom were post-left ventricular assist device (LVAD) implantation)

Complications occurred in 6 (35%):

- 1 pt epistaxis and hematemesis.
- 1pt had injury to left internal jugular due to inability to advance the catheter past the RV due to tortuous anatomy.
- 2 intracranial bleeds
- 2 bleeding at the catheter insertion site after placement.

Impella RP: Percutaneous Device

- Axial Flow pump (22 Fr)
- Catheter based (11Fr)
- IVC implant .
- RPM up to 33000.

RECOVER Trial: Patient Outcomes and Adverse Events

Primary End Points

Event	All patients (N = 30) % (No.)	Cohort A (n = 18) % (No.)	Cohort B (n = 12) % (No.)	<i>p</i> -value
Alive at				
30 Days	73.3 (22)	83.3 (15)	58.3 (7)	0.129
Discharge	70.0 (21)	77.8 (14)	58.3 (7)	0.255
30 days/discharge/next therapy	73.3 (22)	83.3 (15)	58.3 (7)	0.129
180 days	70.0 (21)	77.8 (14)	58.3 (7)	0.255

Secondary EndPoints

Safety end points	All patients (N = 30) % (No.)	Cohort A (n = 18) % (No.)	Cohort B (n = 12) % (No.)	<i>p-</i> value
Death	26.7 (8)	16.7 (3)	41.7 (5)	0.129
Major bleeding	60.0 (18)	55.6 (10)	66.7 (8)	0.543
Device access site	3.3	0.0	8.3	
Postoperative ^a	36.7	33.3	41.7	
Transfusion with no overt bleeding	16.7	22.2	8.3	
Other	3.3	0.0	8.3	
Hemolysis	13.3 (4)	16.7 (3)	8.3 (1)	0.511
Pulmonary embolism	0.0 (0)	0.0 (0)	0.0 (0)	
Tricuspid and pulmonary valve dysfunction ^b	3.3 (1)	5.6 (1)	0.0 (0)	0.406

^aChest or mediastinal re-exploration, tamponade, hemothorax.

^bIncrease in valve regurgitation by more than one grade on a 4-grade scale compared with baseline.

Flows and Hemodynamics

Summary

- ➤ The presence of acute severe RV failure is associated with increased risk of mortality and morbidity.
- Preoperative, intraoperative and postoperative management are key to prevent and avoid progression of RVF and may be critical to prevent poor outcomes.
- There is an increasing number of surgical and percutaneous RVAD options that seem to be efficacious and safe, but timing implantation seems to be a critical step to prevent progression to MOF.

STS/EACTS Latin America Cardiovascular Surgery Conference

November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia

Post-Operative/ICU Management

- Bleeding
- Nitric Oxide
- Inotropes
- Maintain MAP
- Watch CVP/PA ratio go to RVAD early if any doubts
- Role of Pump Speed? Don't know, do not over pump