Donation After Circulatory Death (DCD) Heart Transplantation in Australia: a solution to the donor shortage?

Dr Sarah Scheuer, Dr Hong Chee Chew, Professor Peter Macdonald, Assoc Prof Kumud Dhital
On Behalf of St Vincent’s Hospital DCD Heart Transplant Group
Transplantation pathways

Donation after brain death (DBD)
Controlled death - minimal to no warm ischaemic time (WIT)

Donation after circulatory death (DCD)
Uncontrolled progression to asystole - variable WIT
Overcoming the DCD heart barriers

Enhancing tolerance to warm ischemia with supplementation

GTN – nitric oxide donor

EPO – glycoprotein hormone, active in SAFE cardioprotective pathway

Normothermic perfusion device

- DCD hearts are exposed to an unavoidable warm ischaemic injury
- Ideal preservation modality
 - Minimizes ischaemic injury
 - Allow for organ resuscitation
 - Facilitate viability assessment prior to transplantation
Current outcomes of the clinical DCD program

Protocol modifications

- Commencement of WIT at systolic BP < 90 mmHg
- Extension of donor age to <55
- Addition of increased dose of methylprednisolone and regular albumin to combat oedema whilst on the TransMedics
Current outcomes of the clinical DCD program

St Vincent’s Experience

<table>
<thead>
<tr>
<th>Donor demographics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male : Female</td>
<td>24 : 4</td>
</tr>
<tr>
<td>Average age</td>
<td>30 ± 8 (range 20 – 54)</td>
</tr>
<tr>
<td>Average weight</td>
<td>82 ± 15 kg</td>
</tr>
<tr>
<td>Vasopressor support</td>
<td>12 / 28 (43%)</td>
</tr>
<tr>
<td>Lungs used</td>
<td>19 / 28 (68%)</td>
</tr>
</tbody>
</table>

Donor C.O.D for All Transplanted

- TBI: 43%
- HBI: 11%
- Hanging: 14%
- ICH: 7%
- Other: 25%
Current outcomes of the clinical DCD program

<table>
<thead>
<tr>
<th></th>
<th>No-ECMO</th>
<th>ECMO</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm Ischaemic Time</td>
<td>23 ± 6 mins</td>
<td>23 ± 3 mins</td>
<td>0.32</td>
</tr>
<tr>
<td>Time to Asystole</td>
<td>11 ± 5 mins</td>
<td>9 ± 3 mins</td>
<td>0.08</td>
</tr>
<tr>
<td>Asystole – Cardioplegia</td>
<td>12 ± 2 mins</td>
<td>15 ± 3 mins</td>
<td>0.003</td>
</tr>
<tr>
<td>Cold Ischaemic Time</td>
<td>29 ± 5 mins</td>
<td>27 ± 6 mins</td>
<td>0.20</td>
</tr>
<tr>
<td>OCS</td>
<td>277 ± 70 mins</td>
<td>306 ± 60 mins</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Conclusion

• DCD heart procurement is a feasible alternative to the traditional DBD pathway, with excellent results in patient cohort to date

• Combined approach, to both further improve ischaemic tolerance and minimise asystole-plegia time required to reduce high early ECMO rates

• High staff requirements and cost may be prohibitive in some centres
Clinical studies
Heart and Lung Clinic
- Dr Mark Connellan
- Dr Alasdair Watson
- Dr Emily Granger
- Prof Chris Hayward
- A/Prof Andrew Jabbour
- Dr Paul Jansz
- Prof Anne Keogh
- A/Prof Eugene Kotlyar
- Dr Phillip Spratt

Perfusionists
- Mr Claudio Soto
- Mr Adam Roshan

Transplant Coordinators
ICU
- Dr Priya Nair

Pre-clinical studies
Victor Chang Cardiac Research Institute – Transplant laboratory
- Dr Ling Gao
- Dr Hong Chee Chew
- Dr Arjun Iyer
- Dr Jeanette Villaneuva
- Aoife Doyle
- Dr Mark Hicks