Indications and Outcomes of the Double Switch in ccTGA

David Barron Birmingham, UK

STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 | Hilton Cartagena | Cartagena, Colombia **No Disclosures**

ccTGA: The Problem

ccTGA does not fit into neat, clincially discrete sub-groups

		Frequency	
	Atrial Situs		
Wide rai	Normal Inversus Isomeric	80- 85% 10-15% 2-4%	1 age and severity
	Position		
Wide ra	Laevocardia Mesocardia Dextrocardia	70-75% 10-15% 15-20%	ntional Repair mical Repair n nd thing!
	VSD	70-80%	
	LVOTO Pulmonary Atresia	40-80% 3-8%	ching.
	Arch Hypoplasia/CoA	3-15%	
	Ebsteinoid Tricuspid Valve	10-20%	
	Heart Block	10-15%	
	DORV	3-10%	

Do Nothing vs Do Something

Natural History of ccTGA in Symptomfree adults Freedom from CCF

JACC 36: 255, 2000

Children's Hospital

JTCVS 117: 1190, 1999

Conventional repair vs Anatomical repair

Boston n=123

JTCVS 129: 182, 2005

Conventional ('Physiological') Repair

TR ≥mod at time of surgery STRONGEST risk facto

20 year mortality 50%

Ped Cardiol 23: 137, 2002

Choice of Anatomical Repair

Normally developed LVOT +/- VSD

Acyanotic

Small/Stenotic LVOT With VSD

Cyanosis (variable in degree)

DOUBLE-SWITCH DS

Figure 39-28 The cartoon shows the steps involved in the so-called doubleswitch procedure.

RASTELLI-SENNING RS

Figure 39-29 The cartoon shows the end-result after an atrial redirection procedure combined with intraventicular rerouting of the ventricular septal defect to the aorta, and placement of a conduit from the morphologically (morph.) right ventricle to the pulmonary arteries.

Early & Mid-Term Outcome

Cleveland Clinic n=46 60% DS

Tokyo n= 90 20% DS

EJCTS 24:11-20, 2003

EJCTS 42:1004, 2012

Early & Mid-Term Outcome

0-10% Early Mortality across all series

No difference worldwide in DS vs RS early outcomes Birmingham n=113

Late Survival

Birmingham n=113

Years post repair

JTVCS 142: 1348, 2011

Freedom from Death/Transplantation/Poor mLV Function

Years

Aortic Incompetence at 20 years

	DS	RS
≥ Mild Al	40/58 (70%)	8/38 (21%)
≥ Mod Al	6/58 (10%)	0/38 (0%)
AV Replacement	6/ 58 (10%)	1/38 (3%)

Impact of Aortic Root Annuloplasty

Freedom from ≥mild AI or AVR

Reinterventions

Revision- Pacing procedures excluded

	DS	RS	
AVR	6	1	
MV repair	1	0	
TV repair	3	0	
RF ablation for	4 0		
Aflutter			
Multi-site pacing	3	0	
<u>i</u>			
Residual VSD	3	0	
LVOTO resection	0	4	
Senning	7 (3 balloon) 5 (4 balloon;		
Pathways		stent))	
Pulmonary Arteries	11 (3	8(5 balloon)	
	balloon/stent)		
RVOT	2	0	
enlargement			
RV-PA conduit	n/a	14 (2 balloon)	

Freedom from Reintervention

Years post repair

Poor mLV Function at Follow-Up

15% developed late mLV dysfunction during follow-up

ALL were in the DS group

Not associated with aortic regurgitation Not associated with 'High Risk' Group

Impact of PA Banding to Retrain the mLV

Late Outcomes - Boston

Boston Data

n=25 're-trained' mLVs

20% LATE dysfunction: *all* in cases banded at >2 y linked to longer duration of 'training' >6/12

(all had good function early post-op)

In the entire cohort, n=106 Late dysfunction and AI associated with older age (>10 y at repair) Significant benefit of RESYNCHRONISATION (biventricular pacing)

Risk of late mLV dysfunction

Banding > 2y Double Switch >3 y

JTCVS 147: 537, 2013 ATS 96: 603, 2013

One-and-a-Half Repair - Stanford

The Counter-Argument

Taiwan 1995-2012: n=56

Fontan can give good outcomes for some patients (eg remote VSD) But not good if impaired RV or >modTR

Survival Times (years)

No. at risk			Survival Times (years)		
Conventional Repair	13	9	7	2	
Anatomical Repair	14	5	3	(
Single Ventricular Palliation	23	12	8	0	

EJCTS 49: 522, 2016

Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries[☆] Olivier Metton^a, Régis Gaudin^a, Phalla Ou^b, Sébastien Gerelli^a, Shafi Mussa^a, Daniel Sidi^c, Pascal Vouhé^a, Olivier Raisky^{a,*} ^{*} Department of Pediatric Cardiac Surgery – University Paris Descartes and Necker Sick Children Hospital, Paris, France ^b Department of Pediatric Cardiaclogy – University Paris Descartes and Necker Sick Children Hospital, Paris, France ^c Department of Pediatric Cardiology – University Paris Descartes and Necker Sick Children Hospital, Paris, France ^c Department of Pediatric Cardiology – University Paris Descartes and Necker Sick Children Hospital, Paris, France ^c Department of Pediatric Cardiology – University Paris Descartes and Necker Sick Children Hospital, Paris, France

Last follow-up

2

Preop

4

3

3

Change in TR

None / trivial

Mild

Moderate

Severe

PA Band: Open-Ended Palliation?

Lueven

n=20

Median F/U 7 years

Sustained improvement in TR

Conclusions

Anatomical Repair offers the best long term outcomes...... BUT we are still learning who will benefit most

. Significant early and late reinterventions.

. Late Follow-up:

. Late mLV dysfunction is the concern. ? Related to mLV re-training

Aortic regurgitation is important in the DS group

.High risk groups have very rewarding outcomes

. Overall survival is still >85% for all-comers at 15-20 y

Changing Indications

- . Should we be banding Earlier?
- . Have we underestimated the risk of re-training (? Maximum age 3 y ?)
 - **Role of Enhanced training (create ASD and better assessment)**
- . Role of Banding as definitive treatment?
- . Role of the $1\frac{1}{2}$ repair?
- . Need to be more selective to identify who will benefit most

. Some patients (eg remote VSD, borderline size RV) may do better with Fontan

Enhanced Retraining

PA Banding AND creation of ASD to volume load the mLV

Double-Switch after median 1.2 y training

Median Age at DS 3.8 (1.4-6.8) y

Enhanced Retraining

Tokyo paper again – freedom from all cardiovasclar events

OXFORD UNIVERSITY PRESS

From: Long-term prognosis of double-switch operation for congenitally corrected transposition of the great arteries[†]

Eur J Cardiothorac Surg. 2012;42(6):1004-1008. doi:10.1093/ejcts/ezs118

Figure Legend:

Long-term survival curve. The Kaplan-Meier actuarial survival rate including hospital and late mortality at 20 years was similar.

© The Author 2012. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

Rastelli Senning

Figure 39-29 The cartoon shows the end-result after an atrial redirection procedure combined with intraventricular rerouting of the ventricular septal defect to the aorta, and placement of a conduit from the morphologically (morph.) right ventricle to the pulmonary arteries.

Arterial switch Coronary problems Aortic Root distortion/AR

VS

VS

Rastelli LVOT Distortion/Stenosis Conduit problems

....but it's more subtle than that: Pre-operative state Preparation of the mLV Tricuspid valve function Age at operation High-risk presentation

Toronto –JTCVS but ? Still under review. Experience over 30 years, suggests fontan as good as other options

Long Term Outcome:

What do we expect? .Re-intervention - More in the RS group .Late Aortic Regurgitation – More in DS group .Late mLV dysfunction – variable ? More in DS

