STS/EACTS Latin America Cardiovascular Surgery Conference

November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia

Surgical Options in Fontan-Kreutzer Failure

Stephanie Fuller MD, MS

Thomas L. Spray Endowed Chair in Congenital Heart Surgery Associate Professor, The Perelman School of Medicine at the University of Pennsylvania Program Director, Congenital Cardiac Surgery, The Children's Hospital of Philadelphia Surgical Director, Philadelphia Adult Congenital Heart Program

The Children's Hospital *of* Philadelphia[®]

Consultant: W.L. Gore

Fontan-Kreutzer Failure

Early vs. Chronic

Mode of Failure:

Pump vs. Non Pump

Valente AM, Landzberg MJ, Powell AJ: Adult congenital heart disease. Edited by Libby P. In Essential Atlas of Cardiovascular Disease. New York, New York: Springer; 2009:231–246

- Medical
 - Ventricular Dysfunction
 - Pulmonary Vascular
 Resistance
 - Arrhythmia

- Invasive
 - EP Arrhythmia
 - Catheter Based Baffles and Fenestrations
 - Lymphatic

- Medical
 - Ventricular Dysfunction
 - Pulmonary Vascular
 Resistance
 - Arrhythmia

- Invasive
 - EP Arrhythmia
 - Catheter Based Baffles and Fenestrations
 - Lymphatic

- Surgical
 - Take Down
 - Lymphatic
 - Valve Repair and Replacement
 - Conversion
 - Mechanical Support
 - Destination?
 - Transplant
 - Multiorgan

- Medical
 - Ventricular Dysfunction
 - Pulmonary Vascular
 Resistance
 - Arrhythmia

- Invasive
 - EP Arrhythmia
 - Catheter Based Baffles and Fenestrations
 - Lymphatic

- Surgical
 - Take Down
 - Lymphatic
 - Valve Repair and Replacement
 - Conversion
 - Mechanical Support
 - Destination?
 - Transplant
 - Multiorgan

Surgical and Catheter-Based Reinterventions Are Common in Long-Term Survivors of the Fontan Operation

Tacy E. Downing, MD; Kiona Y. Allen, MD; David J. Goldberg, MD; Lindsay S. Rogers, MD; Chitra Ravishankar, MD; Jack Rychik, MD; Stephanie Fuller, MD; Lisa M. Montenegro, MD; James M. Steven, MD; Matthew J. Gillespie, MD; Jonathan J. Rome, MD; Thomas L. Spray, MD; Susan C. Nicolson, MD; J. William Gaynor, MD; Andrew C. Glatz, MD, MSCE

Circ Cardiovasc Interv. 2017;10:e004924

Table 2. Post-Fontan Surgical Reinterventions

Surgery	Total	Early*	Surgery	Total	Early*
Pacemaker	100	11	Fontan takedown	10	10
Hepatic vein inclusion	21	6	Aortic valve repair/replace	7	0
Fontan revision	19	4	Atrial septectomy	7	2
Heart transplant	19	4	Pulmonary arterioplasty	5	4
Miscellaneous†	17	7	Maze procedure	3	0
AV valve repair/replace	14	1	Arch revision	1	0
Create fenestration	13	7			

AV indicates atrioventricular; and VSD, ventricular septal defect. *Within 1 year post-Fontan.

†Miscellaneous: aortic root replacement (3), fenestration closure (3); pericardial window (2), aortic aneurysm repair, repair intraoperative injury, resect subaortic stenosis, VSD enlargement, thoracic duct ligation, ligate left superior vena cava, thrombectomy, and sutureless pulmonary vein repair.

Figure 2. Freedom from surgical reintervention. A, Kaplan-Meier freedom from first surgical reintervention. Shaded area represents 95% confidence intervals (CIs) of the survival function. B, Kaplan-Meier freedom from first pacemaker and first major cardiac surgery in patients with intact Fontan. Y axis in both panels begins at 50%.

20 Year Freedom from Any Reintervention: 35% Median time to reintervention: 9.8 years Median number of interventions: 1 (0-7)

40-Year Follow-Up After the Fontan Operation

Long-Term Outcomes of 1,052 Patients

Kavitha N. Pundi, MD,* Jonathan N. Johnson, MD,*† Joseph A. Dearani, MD,‡ Krishna N. Pundi, BS,§ Zhuo Li, BS,∥ Cynthia A. Hinck, RN, BSN,* Sonja H. Dahl, RN, DNP,* Bryan C. Cannon, MD,*† Patrick W. O'Leary, MD,*† David J. Driscoll, MD,* Frank Cetta, MD*†

(J Am Coll Cardiol 2012;60:1018-25)

TABLE 6 Risk of Death or Cardi	ac Trans	plant	
	HR	95% CI	p Value
Surgical era 1991-2000*	0.63	0.44-0.90	0.01
Surgical era 2001 onward*	0.12	0.02-0.84	0.03
Intraoperative sinus rhythm	0.64	0.47-0.88	0.005
Pre-operative mean catheter PAP >17 mm Hg	1.42	1.15-1.77	0.001
Asplenia	1.55	1.07-2.25	0.02
Pre-operative use of diuretics	1.58	1.22-2.04	< 0.001
Post-operative Fontan pressure >20 mm Hg	2.29	1.72-3.05	<0.001
Post-operative LA pressure >13 mm Hg	1.85	1.39-2.47	<0.001
Longer bypass time†	1.12	1.05-1.20	0.001

*Compared with the surgical era from 1973 through 1990. †For every 30-min increase in overall bypass time.

Abbreviations as in Tables 2 and 3.

TABLE 7 Risk of Death or Reoperation			
	HR	95% CI	p Value
Bidirectional Glenn prior to Fontan	0.41	0.24-0.70	0.001
Intraoperative sinus rhythm	0.69	0.52-0.94	0.02
Pre-operative mean catheter PAP >17 mm Hg	1.43	1.17-1.76	<0.001
Asplenia	1.81	1.23-2.64	0.002
Pre-operative use of diuretics	1.77	1.39-2.26	< 0.001
Atriopulmonary Fontan connection	1.48	1.16-1.88	0.002
AVV replacement at the time of Fontan	2.42	1.39-4.22	0.002
Post-operative Fontan pressure >20 mm Hg	3.16	2.45-4.07	< 0.001
Longer bypass time*	1.08	1.009-1.16	0.03
*For every 30-min increase in overall bypass time. Abbreviations as in Tables 2 and 3.			

Longitudinal Outcomes of Patients With Single Ventricle After the Fontan Procedure

Andrew M. Atz, MD,^a Victor Zak, PHD,^b Lynn Mahony, MD,^c Karen Uzark, PHD,^d Nicholas D'agincourt, MS,^b David J. Goldberg, MD,^e Richard V. Williams, MD,^f Roger E. Breitbart, MD,^g Steven D. Colan, MD,^g Kristin M. Burns, MD,^h Renee Margossian, MD,^g Heather T. Henderson, MD,ⁱ Rosalind Korsin, RN,^j Bradley S. Marino, MD,^k Kaitlyn Daniels, RN,^f Brian W. McCrindle, MD, MPH,¹ for the Pediatric Heart Network Investigators

(J Am Coll Cardiol 2017;69:2735-44)

Fontan Procedures			
	Fontan 1 (N = 546)	Fontan 2 (N = 416)	Fontan 3 (N = 373)
Time since Fontan procedure, yrs	$\textbf{8.7} \pm \textbf{3.4}$	15.2 ± 3.4	$\textbf{17.8} \pm \textbf{3.4}$
Cardiac surgery	23	28	32
Catheter intervention	48	57	62
Electronic device	13	13	16
Stroke	2	2	4
Seizures	3	5	7
Thrombosis	8	9	12
Arrhythmia treatment	20	28	32
Protein-losing enteropathy	4	7	8
Cirrhosis	0.4	4	8
Plastic bronchitis	0.1	0.5	1
Values are mean \pm SD or %.			

TABLE 1 Complications and Interventions After

(A) Cardiac transplant-free survival. Proportion of subjects in each of 3 competing mutually exclusive states: death, cardiac transplantation, and alive without transplantation for all 545 subjects. (B) Transplant-free survival since Fontan 1 (with 95% confidence intervals) in all subjects with complete follow-up data. For improved resolution, the scale on the y-axis is limited to 0.85 to 1.0.

Early

Surgical

– Take Down

- Valve Repair and Replacement
- Conversion
- Transplant
 - Multiorgan

Early Fontan-Kreutzer Failure

DEFINITION: During same admission as Fontan procedure

Manifestations:

Low cardiac output Hypoxemia Pathway obstruction/thrombosis End organ dysfunction (liver, kidneys) Pleural effusions Arrhythmias

Options:

Medical management Revision (transcatheter or surgical) ECMO Takedown

Trends in Fontan surgery and risk factors for early adverse outcomes after Fontan surgery: The Australia and New Zealand Fontan Registry experience

Ajay J. Iyengar, MBBS(Hons), BMedSci,^{a,b} David S. Winlaw, MBBS(Hons), MD, FRACS,^c John C. Galati, BSc, PhD,^{b,j} David S. Celermajer, MBBS, PhD, DSc, MSc, FAHA, FRACP, FAA,^d Gavin R. Wheaton, MBBS, FRACP,^e Thomas L. Gentles, MBChB, FRACP,^f Leeanne E. Grigg, MBBS, FRACP,^g Robert G. Weintraub, MBBS, FRACP,^{a,b} Andrew Bullock, MBBS, FRACP,^h Robert N. Justo, MBBS, FRACP,ⁱ and Yves d'Udekem, MD, PhD^{a,b}

(J Thorac Cardiovasc Surg 2014;148:566-75)

Trends in Fontan surgery and risk factors for early adverse outcomes after Fontan surgery: The Australia and New Zealand Fontan Registry experience

Ajay J. Iyengar, MBBS(Hons), BMedSci,^{a,b} David S. Winlaw, MBBS(Hons), MD, FRACS,^c John C. Galati, BSc, PhD,^{b,j} David S. Celermajer, MBBS, PhD, DSc, MSc, FAHA, FRACP, FAA,^d Gavin R. Wheaton, MBBS, FRACP,^e Thomas L. Gentles, MBChB, FRACP,^f Leeanne E. Grigg, MBBS, FRACP,^g Robert G. Weintraub, MBBS, FRACP,ⁱ Andrew Bullock, MBBS, FRACP,^h Robert N. Justo, MBBS, FRACP,ⁱ and Yves d'Udekem, MD, PhD^{a,b}

(J Thorac Cardiovasc Surg 2014;148:566-75)

	Early n	ıortal	ity (n =	37)	Early	failur	e (n = 6	5)	Prolonged	effus	ions (n	= 75)	Composit outcor	te adverse ne (n = 16	early 5)
	Univariat	e N	Iultivar	iate	Univariate	M	lultivari	ate	Univariate	N	lultivar	iate	Univariate	Multiva	riate
	Р		95%	Р	Р		95%	Р	Р		95%	Р	Р	95%	Р
Variable	value	OR	CI	value	value	OR	CI	value	value	OR	CI	value	value	OR CI	value
BCPS	<.001	—§			.003	<u> §</u>			.09				<.001	<u> §</u>	
Previous or concomitant PA reconstruction	.8				.6				.2				.9		
Pre-Fontan hemodynam	ics														
Arterial oxygen saturation, (per %; n = 839)	.2				.1				.3				.1		
PA pressure (per 5 mm Hg; n = 869)	.01	1.5	1.0-2.4	.06	.003	1.4	1.0-2.1	.08	.4				.03	1.3 0.9-1.3	8.1
AV value regurgitation (n = 871)	—†				.08	0.4	0.04-3.0	.3	.5				.6		
Arteriovenous malformations (n = 809)	.1				.08	2.1	0.6-7.2	.3	.2				.03	2.6 1.2-5.3	8 .02
Collaterals $(n = 799)$.6				.08				.09				.5		
Operative variables															
Concomitant procedure	.1	2.2	0.8-6.0	0.1	.2				.007	2.2	1.2-3.8	.008	.01	1.9 1.1-3.	3 .02
Fenestration	.007	—§			.2				.1				.04	<u> §</u>	
Postoperative effusions (mortality and failure end points only)	.3				<.001	14.5	6.5-32.5	<.001	_				_		
RSV seasonality (May-Sept prolonged effusions end point only)	_				_				.8				_		

Destruction normatare are presented for covariates entered into multiverista models. OP. Odde ratio: CI confidence interval: Ref. reference: RiV biventricular: TA tricuend

18 Years of the Fontan Operation at a Single Institution

Results From 771 Consecutive Patients

Lindsay S. Rogers, MD,*† Andrew C. Glatz, MD,*† Chitra Ravishankar, MD,*† Thomas L. Spray, MD,*‡ Susan C. Nicolson, MD,*§ Jack Rychik, MD,*† Christina Hayden Rush, BSN,* J. William Gaynor, MD,*‡ David J. Goldberg, MD*† *Philadelphia, Pennsylvania*

(J Am Coll Cardiol 2012;60:1018-25)

Table 9	Summary	of Contemporary	Reports	of Early Posto	perative Outco	mes		
		Cohort Years	n	Mortality	Takedown	Effusion (days)	Length of Stay (days)	CPB Time (min)
O'Brien et al.	. (7)	1997-2008	145	5.5%	2.8%	12	8	82 (63-102)
Hirsch et al.	(9)	1992-2007	636	4.0%	3.0%		10	66 (55-93)
Tweddell et a	al. (8)	1994-2007	256	2.0%	0.8%	5	9	110 (89-129)
Salvin et al. ((10)	2001-2005	226	0.9%	0.9%	6		$\textbf{107.9} \pm \textbf{46.9}$
Petrossian et	t al. (11)	1992-2005	285	1.1%	1.4%	8	11	

Management of Early Fontan Failure: A Single Institution Experience

Michael O. Murphy, Andrew C. Glatz, David J. Goldberg, Lindsay S. Rogers, Chitra Ravishankar, Susan C. Nicolson, James M. Steven, Stephanie Fuller, Thomas L. Spray and J. William Gaynor

- Single center cohort study
- July 1st 1995 to December 31st 2009
- Early Fontan Failure was defined as:
 - -early post-operative death
 - -need for Fontan takedown
 - -need for ECMO
 - -emergent transplant

592 patients

- Pre-Op Cath data in 83.4%
 - Prior SCPC 96.8%
 - Fenestration 91%
 - MUF 95.9%
 - DHCA 97.5%
 - ECC 60% vs LT 40%
- Failure: 11 patients (1.9%)

Results

Results

PATIENT CHARACTERISTICS					
	Fontan Fai	lure N=11	No Fontan Fa	P value	
Heterotaxy	1	9.09%	58	9.98%	0.922
Common AVV	2	18.18%	76	13.08%	0.622
AVV regurgitation >mild	2	18.185	78	14.86%	0.760
HLHS	4	36.36%	265	46.33%	0.514
Dominant RV	7	63.64%	386	67.48%	0.788
No prior SCPC	3	27.27%	15	2.58%	<0.001*
	Mean/median	SD or range	Mean/median	SD or range	P value
Age at Stage II (months)	7.1	4.7-14.8	6.2	1.9-177.6	0.934
Age at Fontan (years)	2.06	1.31-16.84	2.47	1-38.42	0.470
Weight at Fontan (kg)	10.8	10-43	12.4	6.7-59.2	0.418
Stage II to Fontan (mths)	18.9	13.3-46.6	23.5	5.2-155.9	0.524
PAP	12.3	3.1	11.2	3	0.258
VEDP	9.5	3.3	7.4	2.7	0.019*

Results

SURGICAL CHARACTERISTICS					
	Fontan Fai	ilure N=11	No Fontan Fa	P value	
Fenestration	9	81.82%	530	91.22%	0.293
Additional procedures	2	18.18%	103	17.73%	0.969
Arch augmentation	0	0.00%	2	0.34%	0.413
AVV repair	1	9.09%	30	3.44%	0.351
Extra-Cardiac Conduit	11	100.00%	347	59.72%	<0.001*
	Mean/median	SD or range	Mean/median	SD or range	P value
TS (minutes)	89	70-185	65	32-274	0.001*
CPB (minutes)	60.5	39-126	40	11-242	0.003*
XC (minutes)	39	18-99	25	0-96	<0.001*
DHCA (minutes)	33	0-59	23	0-80	0.255

OUTCOMES					
	Mean/median	SD or range	Mean/median	SD or range	P value
ICU Duration (days)	8	4-28	2	0-56	<0.001*
Effusion Duration (days)	15	6-50	2	1-71	<0.001*
Hospital Duration (days)	17	4-108	7	2-71	<0.001*

Chronic

- Surgical
 - Take Down
 - -Valve Repair and Replacement
 - Conversion
 - Transplant
 - Multiorgan

Management of the failing Fontan circulation

Barbara J Deal,¹ Marshall L Jacobs²

Heart 2012;98:1098-1104.

Table 1 Failing For	ntan circulation	
Constitutional	Growth failure	Inadequate cardiac output
	Exercise intolerance	Chronotropic incompetence, pronounced atrial distension
	Depression	Secondary to limitations on functional status
Haemodynamic	Obstruction Systemic venous Systemic outflow AV valve function Ventricular dysfunction	Atriopulmonary, pulmonary arterial Pulmonary venous return, atrioventricular (AV) valve inflow Ventricular outflow, aortic arch ≥Moderate regurgitation ≥Mild stenosis Secondary: atrial dilatation/distortion; AV valve or semilunar valve dysfunction, chronic arrhythmias
	Thromhosis	or antiarmythmic medications; impaired myocardial perfusion due to coronary sinus hypertension Systemic venous, atrial, pulmonary
Rhythm	Arrhythmias	Sinus node dysfunction, predominant junctional rhythm, AV block, supraventricular tachycardia/atrial tachycardia, ventricular tachycardia
Pulmonary	Cyanosis Pleural effusions	Intracardiac right to left shunt, veno-venous collaterals, pulmonary arteriovenous malformations (AVMs)
Gastrointestinal	Ascites	Secondary to portal hypertension related to obstruction, versus cirrhosis
Metabolic	Metabolic markers	Declining albumin; thrombocytopenia; hyperbilirubinaemia; coagulopathy

Indications for Surgical Revision

- Residual Shunt
- Systemic Valve Regurgitation
 - Neoaortic or Atrioventricular
- Conduit Obstruction
- Significant Atrial Flutter or Fibrillation
- Pulmonary Venous Obstruction
- Aortic Root Dilation

Avoid in patients with severe ventricular dysfunction, PLE, plastic bronchitis

Fontan-Kreutzer Conversion

- Atrial Septectomy
- Biatrial Maze
- Right Atrial Resection
- Extracardiac Fontan
- Dual Chamber Epicardial Pacemaker

Figure 3 Surgical modifications of atrial maze procedure in complex anatomy. Solid black lines indicate sites of cryoablation. avn, atrioventricular node; CS, coronary sinus; FO, foramen ovale; HV, hepatic vein; IVC, inferior vena cava; LAA, left atrial appendage; LSVC, left superior vena cava; MV, mitral valve; PV, pulmonic vein; RAA, right atrial appendage; RSVC, right superior vena cava; TAPVR, total anomalous pulmonary venous retum; TV, tricuspid valve. Reprinted with permission from Mavroudis C, Deal BJ, Backer CL, Tsao S. Arrhythmia surgery in patients with and without congenital heart disease. *Ann Thorac Surg* 2008;86:857–68.

Rescuing the failing Fontan

Carl L Backer

Table 1	Results of a	surgical intervention ((rescue) for the failing Fonta	an
Procedure		n	Early mortality (%)	Late mortality or transplant (%)
Fontan taked	own	38	26	45
Fontan conve	arsion	137	11	26
Heart transpl	ant	50	20	34

Table 1 Patients undergoing Fontan conversion at Ann & Robert
H. Lurie Children's Hospital from 1994 to 2012 ($n = 140$)

Median age at initial Fontan	5.6 yrs (range,
	1.1 – 34.9)
Median age at Fontan conversion	23.2 yrs (range,
	2.6 - 47.3)
Interval from initial Fontan to conversion	16.7 yrs (range,
	1.2 – 33.6)
Right atrial tachycardia	48 patients
Left atrial tachycardia	21 patients
Atrial fibrillation	67 patients

Adapted and reprinted with permission from Deal et al; Ann Thorac Surg 2016;101:717-724.²

Figure 8 Fontan conversion with arrhythmia surgery at Ann & Robert H. Lurie Children's Hospital 1994–2013 (145 Fontan conversions).

Table 2 Independent Risk Factors for Cardiac Death or Transplantation after Fontan Conversion

Variable	Adjusted hazard ratio (95% CD	P value	
Right or indeterminate ventricular morphology	5.71 (2.37 – 13.75)	<.001	
Ascites	3.69 (1.59 - 8.56)	.002	
Protein-losing enteropathy	4.93 (1.16 – 20.98)	.03	
Cardiopulmonary bypass time > 240 min	2.68 (1.20 - 6.00)	.02	
Biatrial arrhythmia operation	6.17 (1.84 - 20.71)	.003	

Abbreviation: CI, confidence interval.

Adapted and reprinted with permission from Deal et al; Ann Thorac Surg 2016;101:717-724.2

Backer CL. Heart July 2016 Vol 102 No 14

Surgical options after Fontan failure

Joost P van Melle,¹ Djoeke Wolff,² Jürgen Hörer,³ Emre Belli,⁴ Bart Meyns,⁵ Massimo Padalino,⁶ Harald Lindberg,⁷ Jeffrey P Jacobs,^{8,9} Ilkka P Mattila,¹⁰ Håkan Berggren,¹¹ Rolf M F Berger,² Rene Prêtre,¹² Mark G Hazekamp,^{13,14} Morten Helvind,¹⁵ Matej Nosál,¹⁶ Tomas Tlaskal,¹⁷ Jean Rubay,¹⁸ Stojan Lazarov,¹⁹ Alexander Kadner,²⁰ Viktor Hraska,²¹ José Fragata,²² Marco Pozzi,²³ George Sarris,^{24,25} Guido Michielon,²⁶ Duccio di Carlo,²⁷ Tjark Ebels²⁶

van Melle JP, et al. Heart 2016;102:1127-1133. doi:10.1136/heartjnl-2015-309235

Indication	Number (%)
	Number (%)
Arrhythmia	98 (43.6)
Deteriorating functional class	97 (43.1)
Extreme RA dilatation	87 (38.7)
Obstruction	47 (20.9)
Protein losing enteropathy	31 (13.8)
Thrombus	26 (11.6)
AVV regurgitation	18 (8.0)
Pulmonary vein stenosis	11 (4.9)
Cyanosis	12 (5.3)
Systemic obstruction	4 (1.8)
Baffle leak	4 (1.8)

Figure 2 Indications for failing Fontan surgery. More than one indication is possible within the same patient. RA, right atrial; AVV, atrioventricular valve; PV, pulmonary vein; PLE, protein losing enteropathy; FC, functional class.

Surgical options after Fontan failure

Joost P van Melle, ¹ Djoeke Wolff, ² Jürgen Hörer, ³ Emre Belli, ⁴ Bart Meyns, ⁵ Massimo Padalino, ⁶ Harald Lindberg, ⁷ Jeffrey P Jacobs, ^{8,9} Ilkka P Mattila, ¹⁰ Håkan Berggren, ¹¹ Rolf M F Berger, ² Rene Prêtre, ¹² Mark G Hazekamp, ^{13,14} Morten Helvind, ¹⁵ Matej Nosál, ¹⁶ Tomas Tlaskal, ¹⁷ Jean Rubay, ¹⁸ Stojan Lazarov, ¹⁹ Alexander Kadner, ²⁰ Viktor Hraska, ²¹ José Fragata, ²² Marco Pozzi, ²³ George Sarris, ^{24,25} Guido Michielon, ²⁶ Duccio di Carlo, ²⁷ Tjark Ebels²⁶

van Melle JP, et al. Heart 2016;102:1127-1133. doi:10.1136/heartjnl-2015-309235

Figure 4 Kaplan–Meier plot showing the event-free survival after heart transplantation (HTX) (n=50) or Fontan conversion (n=137). Time of follow-up is truncated at 15 years. End points are mortality or (re-)HTX. FC, functional class; yrs, years.

Meta-Analysis of the Effectiveness of Heart Transplantation in Patients With a Failing Fontan

Nazlee Tabarsi, MD^a, Meijiao Guan, PhD^a, Jacob Simmonds, MA, MB^b, Mustafa Toma, MD^a, Marla Kiess, MD^a, Victor Tsang, MBBS^b, Peter Ruygrok, MD^c, Igor Konstantinov, MD, PhD^d, William Shi, MBBS^d, and Jasmine Grewal, MD^{a,*}

Am J Cardiol 2017;119:1269-1274)

Author, Year	Study Size		Survival Rates (%)	Author, Year	Study Size		Survival Rates (%)
Hsu, 1995	9	-	66.7 (33.4, 88.9)	Hsu, 1995	9	· · · · ·	66.7 (33.4, 88.9)
Gamba, 2004	14	- _	86.0 (57.6, 96.5)	Gamba, 2004	14	-	77.0 (49.1, 92.1)
Chaudhari, 2005	4 —		75.0 (23.8, 96.6)	Chaudhari, 2005	4	<u> </u>	75.0 (23.8, 96.6)
Simmonds, 2008	15	•	73.0 (46.4, 89.4)	Simmonds, 2008	15	— . —	63.0 (37.4, 82.9)
Irving, 2010	3	• • • • • • • • • • • • • • • • • • •	66.7 (15.4, 95.7)	Irving, 2010	3 —		66.7 (15.4, 95.7)
Kovach, 2012	194	-#-	81.0 (74.9, 85.9)	Kovach, 2012	194	-	70.0 (63.2, 76.0)
Paniagua Martin, 2012	10 -	-	60.0 (29.7, 84.2)	Paniagua Martin, 2012	10	·	60.0 (29.7, 84.2)
Seddio, 2013	22	- _	85.0 (63.7, 94.8)	Seddio, 2013	22	-	81.0 (59.5, 92.5)
Delmo, 2013	5 —		40.0 (10.0, 80.0)	D			
Rungan, 2014	6	•	100.0 (60.7, 100.0)	Deimo, 2013	5 —		40.0 (10.0, 80.0)
lyengar, 2014	8		100.0 (68.8, 100.0)	Rungan, 2014	6		100.0 (60.7, 100.0)
Michielon, 2015	61	-	82.0 (70.3, 89.7)	lyengar, 2014	8		80.0 (41.4, 95.8)
Fixed effect model		•	80.3 (75.9, 84.2)	Michielon, 2015	61		73.0 (60.6, 82.6)
				Fixed effect model		•	71.2 (66.3, 75.7)
		40 50 60 70 80 90 100					
Figure 2. Forest plot of 1-va	ear survival rates using fu	red effects model. Studies are arranged by	v year of publication			40 50 60 70 80 90 100	

5-year survival rates

Figure 3. Forest plot of 5-year survival rates using fixed effects model. Studies are arranged by year of publication.

ing fixed effects model. Studies are arra

Mortality Risk Stratification in Fontan Patients Who Underwent Heart Transplantation

Christopher J. Berg, MS^a, Brenton S. Bauer, MD^{a,b,c}, Abbie Hageman, BS^{a,d}, Jamil A. Aboulhosn, MD^{a,c,d}, and Leigh C. Reardon, MD^{a,c,d,e,*}

Am J Cardiol 2017;119:1675-1679

Mortality risk post-transplant by patient characteristic			
Variable	Hazard Ratio (95% CI)	P value*	
Age <18 at time of transplantation (N=16)	3.88 (1.36 - 11.05)	0.011	
Female (N=14)	0.58 (0.21 - 1.66)	0.31	
Transplantation prior to 2004 (N=17)	4.18 (1.35 - 12.90)	0.013	
Fontan-transplantation interval <10 years (N=15)	4.38 (1.59 - 12.04)	0.004	
Left morphological ventricle (N=24)	1.80 (0.58 - 5.56)	0.307	
Number of previous cardiac surgeries		0.641	
>3 previous surgeries	0.58 (0.17 - 2.05)	0.401	

Table 4

Preoperative risk factors for postoperative mortality

Preoperative risk factor	N	Hazard Ratio (95% CI)	P value*
Systemic ventricle ejection fraction <20%	12	3.40 (1.14 - 10.19)	0.029
Moderate or severe atrioventricular valve regurgitation	20	8.12 (1.05 - 62.50)	0.044
Average Fontan circuit pressure (mmHg)	28		0.330
Fontan pressure >16.5mmHg	10	0.21 (0.05 - 0.84)	0.027
Transpulmonary gradient (mmHg) Comorbidities	28		0.160
Protein losing enteropathy	6	1.38 (0.40 - 4.83)	0.611
Chronic renal insufficiency	11	0.37 (0.10 - 1.29)	0.118
Cirrhosis	6	0.81 (0.18 - 3.61)	0.785
Ascites	7	0.21 (0.03 - 1.61)	0.135
Advanced mechanical support			
Renal replacement therapy	2	71.29 (5.96 - 852.40)	<0.001
Extra-corporal membrane oxygenation	4	6.25 (1.94 - 20.20)	0.002
Serum markers			
Creatinine (mg/dL)	32		0.493
Total bilirubin (mg/dL)	27		0.081
Model of End-Stage Liver Disease, excluding INR score	27	1.17 (1.04 - 1.31)	0.007
Score ≥19	7	4.91 (1.40 - 17.27)	0.013
Cardiopulmonary bypass time (mins)	28		0.228
Donor ischemic time (mins)	26		0.367

* Bold values represent significance at p <0.05.

Table 3

Operative Strategy

Median Sternotomy

Limited Laparotomy – Liver Exam

Orthotopic Heart Transplant on CPB

Wean from CPB and turn SVC cannula into right atrium

Orthotopic Liver Transplant – bilateral subcostal with midline extension

Reverse heparin

Close chest and abdomen

Intermediate-term outcomes after combined heart-liver transplantation in children with a univentricular heart

Seth A. Hollander, MD,^a Olaf Reinhartz, MD,^b Katsuhide Maeda, MD,^b Melissa Hurwitz, MD,^c David N. Rosenthal, MD,^a and Daniel Bernstein, MD^a J Heart Lang Transplant 2013;32:368–370

Since 2007 – 47 Heart Liver Transplants, only 3 pediatric

3 patients at 2, 3, 5 years post transplant

- 100% one-year survival

Age/Gender	Diagnosis	Time from Palliation - Transplant
17 Female	DILV, TA, Straddling MV, TGA	13 years
14 Female	Heterotaxy, Unbalanced AV Canal, Interrupted IVC	9 years
7 Male	VACTERL, DORV, PS, VSD, PAPVR	7 years

Heart and heart–liver transplantation in adults with failing Fontan physiology

Leigh C. Reardon^{1,2} | Eugene C. DePasquale³ | Jana Tarabay¹ | Daniel Cruz³ | Hillel Laks⁴ | Reshma M. Biniwale⁴ | Ronald W. Busuttil⁵ | Fady M. Kaldas⁵ | Sammy Saab⁶ | Robert S. Venick⁷ | Jeannette P. Lin¹ | Ali Nsair³ | Mario C. Deng³ | Abbas Ardehali⁴ | Martin Caderias³ | Amit Iygengar⁸ | Jamil A. Aboulhosn¹

> Conclusions: Despite inherent risks and complexities of OHT or CHLT in patients with a failed Fontan, transplant is a reasonable therapy. Peri- and postoperative complications are common and may require surgical reintervention. Continued observation of practices and unifying themes may help improve patient selection, pre- and postoperative treatment and ultimately outcomes.

 Table 2.
 Patient clinical characteristics (n = 20 unless otherwise specified)

Clinical characteristics	
Number of cardiac surgeries, Median (range)	3 (2-6)
Age at Fontan, years median (range)	5.5 (3- 22)
Number of CHLT, No. (%)	5 (25%)
Complex venous reconstruction, No. (%)	8 (40%)
EF%, Median (range) (n = 19)	35 (15-65)
Resting saturation, % median (range)	90 (67-97)
Number of cyanotic patients (<90%), No. (%)	9 (45%)
Fontan pressure, mmHg median (range) (n = 17)	18 (15-23)
Single ventricular EDP, mmHg median (range) (n = 12)	12.5 (9-15)
BNP, pg/mL, Median (range) (n = 18)	394 (27-2710)
Creatinine, mg/dL, Median(range) (n = 18)	1.2 (0.5-2)
Albumin, g/dL, Median (range) (n = 18)	4 (2.5-5)
Total bilirubin, mg/dL, Median (range) (n = 18)	1.65 (0.3-4.7)
MELD-XI, median, (range) (n = 17)	13.5 (9.4-22.9)
Cardiopulmonary bypass time, median (range) (n = 14)	181 (108-465)
Days to discharge post-OHT, Median (range)	23 (8-76)
Days to discharge post-CHLT, Median (range)	51 (26-77)

Bleeding	11 (55%)
Hematoma requiring evacuation	2 (10%)
Bleeding requiring chest exploration	2 (10%)
Cardiac tamponade requiring window	4 (20%)
Extensive bleeding	2 (10%)
Pleural effusions requiring thoracentesis	1 (10)
Multi-organ failure	0 (0%)
Stroke	0 (0%)
Infection	4 (20%)
Extracorporeal membrane oxygenation after OHT	1 (5%)
Acute renal failure requiring hemodialysis	4 (20%)
Plasmapheresis/Intravenous Immunoglobulins (IVIG)	5 (25%)
Delayed chest closure	5 (25%)
Acute rejection	
Acute Cellular Rejection >1R	0 (0%)
Acute Cellular Rejection ≤Grade 1R, mild	2 (10%)
Antibody Mediated Rejection >1	0 (0%)
Antibody Mediated Rejection ≤Grade 1, mild	1 (5%)
Arrhythmias	4 (20%)
Ventricular tachycardia	2 (10%)
Atrial fibrillation	1 (5%)
Atrial flutter	1 (5%)

Single-center outcomes of combined heart and liver transplantation in the failing Fontan

Benjamin A. D'Souza¹ | Stephanie Fuller² | Lacey P. Gleason² | Nicole Hornsby¹ | Joyce Wald¹ | Karen Krok³ | Abraham Shaked⁴ | Lee R. Goldberg¹ | Alberto Pochettino⁵ | Kim M. Olthoff⁴ | Yuli Y. Kim¹

FIGURE 1 Results of cardiac transplant referrals for Fontan patients between 2000 and 2013. CHLT, combined heart-liver transplantation; OHT, orthotopic heart transplantation Indication for referral: 7/17 PLE (43%) 57% inotrope dependent All had cirrhosis by MRI or CT and two had biopsy proven cirrhosis Median wait 0.7y (0.1-3.5)

> Median CPB 218" XC 176" Median ischemic time 211" Median LOS 29 days

RESULTS: AKI 4/7 (57%) with dialysis in 2 No mortality at 4.6 years 1/7: liver rejection treated with steroids NOW 10 Patients

Conclusion

- Fontan-Kreutzer operation achieves excellent results
- Survival excellent when early failure detected and addressed with takedown
- Mechanical support exists for the chronic patient with failing Fontan-Kreutzer and results are encouraging
- Transplant remains challenging Organ shortage Comorbidities
- Heart liver transplantation is a viable option for patients with Fontan-Kreutzer association liver disease
- Research efforts need to focus on what constitutes a good adult Fontan-Kreutzer and we need to reproduce this physiology