STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia

Valve-sparing repair with intraoperative balloon dilation in tetralogy of Fallot: **Mid-term results**

Valve-sparing repair with intraoperative **balloon dilation in tetralogy of Fallot: Mid-term results**

Pedro J del Nido, MD **Boston Children's Hospital Department of Cardiac Surgery**

No Disclosures

Valve-sparing repair with intraoperative balloon dilation

Implemented at our BCH since 2007

Technique

- Infundibulotomy
 - VSD closure, muscle bundle resection
 - Infundibular (non-transannular) patch
- MPA patch augmentation
- Pulmonary valve commissurotomy
- Pulmonary valve annulus dilation
 - Balloon inflation to 120 140% of \bullet measured annulus diameter
 - 1 unit increase in annulus z-score \bullet

Methods

- - Excluded pts: ToF/PA, ToF/MAPCAs, ToF/CAVC

Study Endpoints:

Early

- Residual Lesion Score pulmonary stenosis (discharge) echocardiogram)
 - RVOT peak gradient: Class 1: 0 20mmHg, Class 2: 20 40mmHg, Class 3: >40mmHg
 - Pulmonary valve reintervention for residual stenosis
 - Multi-variable regression analysis risk factors for valve reintervention

Late

- Mid-term pulmonary valve competency
- RV remodeling chamber size

Retrospective review of all ToF-PS pts who underwent valve-sparing repair with IBD under 1 year of age (2007 - 2015)

genetic syndrome

Prior pulmonary valve intervent

	Number (%) or Median (Interquartile range)		
	162		
	98 (73, 98 days)		
	5.4 (4.6, 6.1 kg)		
ore	-2.2 (-2.4, -1.8)		
	19 (12%)		
tion	9 (6%)		

Pulmonary valve characteristics

Valve morphology

Study cohort: N = 162

Valve leaflet appearance

Early outcome 1: **Residual Lesion Score - pulmonary stenosis**

Residual Lesion Score

Reinterventions for residual RVOT stenosis N = 30/162 (19%)

Pulmonary valve Branch PA Subvalvar

Early outcome 2: Pulmonary valve reintervention for residual stenosis

•		· ·	
	Hazard Ratio	95% CI	p value
	4.47	1.24, 16.09	0.036
	1.72	1.28, 2.33	0.001
enosis			0.001
	Ref		
	2.69	0.76, 9.49	
	10.59	2.64, 42.4	

Late outcome 1: pulmonary valve competence

Median follow-up = 2.5 yrs (range: 0.6 - 8.5

Risk factors for pulmonary regurgitation

Multivariable regression analysis (N = 162, N events = 71)

Late outcome 2: RV chamber size - Matched cohort analysis

IBD = intraoperative balloon dilation

*Same inclusion criteria

Late outcome 2: RV chamber size

Time since repair, years

*Indexed to BSA

N = 53 per

Conclusions

- Valve-sparing repair with IBD is associated with
 - risk factors for early onset pulmonary regurgitation
- Extent of RV dilation was not significantly different compared to transannular patch technique
 - Further prospective studies required (cardiac MRI)

 Patients with annular z score less than -2.45 and those under 3 months of age experience higher rates of early reintervention for residual pulmonary valve stenosis

development of progressive pulmonary regurgitation

• Significant annular hypoplasia, thickened/dysplastic leaflets are

Pulmonary valve characteristics in ToF

ToF: Valve leaflet histology

Histologic examination of (A) a normal PV, and (B) a dysplastic PV in ToF: At histology, the dysplastic PV in ToF shows enlargement of spongiosa, fragmentation of fibrosa, and fibrotic thickening of the free edge (magnification 31, elastic fiber Van Gieson staining).

Pulmonary valve morphology and reintervention for residual stenosis

All valve-sparing repair cases at BCH - 2007-2015 (N = 207): Pulmonary valve reintervention, N = 32

Pulmonary valve annulus remodeling post valve-sparing repair

PV annulus dimension z-score

Time since Initial TOF Repair, Years

Valve annulus growth vs. healthy children

