Concomitant Tricuspid Valve Repair: When, Why and How!

Steven F Bolling, MD
Professor of Cardiac Surgery
University of Michigan
Disclosures

• Consultant/Advisory Board: Abbott, Edwards Lifesciences

• Ownership Interest: Millipede, Pipeline
Is FTR important?

Concomitant FTR:

85 to 95% of all TR!

- Ebstein’s
- Endocarditis
- Rheumatic
- Pacer impingement

Valve repair for functional tricuspid valve regurgitation: anatomical and surgical considerations

Is FTR important?

Decreased CO
 Fatigue, decreased exercise tolerance
“Right-sided” Heart Failure
 Ascites, edema, decreased appetite, fullness

FTR patients feel terrible

Valve repair for functional tricuspid valve regurgitation: anatomical and surgical considerations
...and FTR patients die!

FTR increases Mortality

5223 pts: **Severe and Moderate** TR increase mortality independent of PASP, LVEF, IVC size, RV size/ function.

Severe and **MODERATE** FTR Decreases Survival

Topilsky. JACC 2014.

TR is bad. TR hurts quality of life and QUANTITY
Annular Dilation / Shape Change of FTR:

75% - all cases of MR!

Normal Tricuspid Annulus

Tricuspid Annulus with Functional TR

2017 - FTR is ignored!

STS Database

MR + TR

Annual New MR

Annual TR Surgeries

MR - 4,000,000
TR - 1,600,000

250,000
60,000
8,000
Tricuspid repair when fixing MR

Based on TR Grade

<table>
<thead>
<tr>
<th>Preoperative TR Grade</th>
<th>Percent of Patients Having Tricuspid Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Mild</td>
<td>3.9</td>
</tr>
<tr>
<td>Moderate</td>
<td>39</td>
</tr>
<tr>
<td>Severe</td>
<td>79</td>
</tr>
</tbody>
</table>

Source: STS Database, N = 46500
V 2.73 2011-2013
When to look for FTR: *Pre-op*

Functional TR – *dynamic*! under anesthesia 4+ TR, can become mild…

Regard any previous significant TR or a dilated annulus as indications for TV repair!
The Growing Clinical Importance of Secondary Tricuspid Regurgitation

Maurizio Taramasso, MD,* Hugo Vanermen, MD,† Francesco Maisano, MD,* Andrea Guidotti,* Giovanni La Canna, MD,* Ottavio Alfieri, MD*

* Milan, Italy; and Aalst, Belgium

Functional or secondary tricuspid regurgitation (STR) is the most frequent etiology of tricuspid valve pathology in Western countries. Surgical tricuspid repair has been avoided for years, because of the misconception that tricuspid regurgitation should disappear once the primary left-sided problem is treated; this results in a large number of untreated patients with STR. Over the past few years, many investigators have reported evidence in favor of a more aggressive surgical approach to STR. Consequently, interest has been growing in the physiopathology and treatment of STR. The purpose of this review is to explore the anatomical basis, pathophysiology, therapeutic approach, and future perspectives with regard to the management of STR. (J Am Coll Cardiol 2012;59: 703-10) © 2012 by the American College of Cardiology Foundation

If in OR, don’t just look for TR!

Look for annulus > 40 mm

RA, RV changes
FTR goes away by itself?

5589 MVR only cases (McCarthy, ATS 2004)

Preop 16% had severe 3/4+ TR… NO

Discharge (MVR without TVr)

62% had residual severe TR !…

TR does not!
and despite a “good” mitral result…

No guarantee of FTR “getting better”!
Tricuspid Valve Repair

Secondary Tricuspid Regurgitation or Dilatation: Which Should Be the Criteria for Surgical Repair?

Gilles D. Dreyfus, MD, Pierre J. Corbi, MD, K. M. John Chan, AFRCS, and

311 Patients MV Repair

Preop TR 0.7 – 0.9

93 % no/trace/mild

7 % moderate

NONE Severe!
TR Does Not Just “Go Away” After MVr

311 undergoing MVr, mostly degenerative, all with dilated TV annulus

TR Worsening by > 2 Grades

Adding TV repair adds risk

110 matched pts for MVr with FTR

- 30 day mortality, no TVr vs 8.5% vs 2%

- for MVr + TVr, p = 0.2

TR progression rate was 40% vs 5%

5-yr survival was 45% vs 74%

Mitral valve surgery for functional mitral regurgitation: should moderate-or-more tricuspid regurgitation be treated? a propensity score analysis.

Calafiore AM
Performing Concomitant Tricuspid Valve Repair at the Time of Mitral Valve Operations Is Not Associated With Increased Operative Mortality

Vinay Badhwar, MD, J. Scott Rankin, MD, Max He, MS, Jeffrey P. Jacobs, MD, Anthony P. Furnary, MD, Frank L. Fazzalari, MD, Sean O’Brien, PhD, James S. Gammie, MD, and David M. Shahian, MD

<table>
<thead>
<tr>
<th>Operation</th>
<th>TR Grade</th>
<th>Tricuspid Repair Rate</th>
<th>Morbidity OR (95% CI)</th>
<th>p Value</th>
<th>Mortality OR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated MVRR</td>
<td>None-mild</td>
<td>4.0% (1,823 of 45,551)</td>
<td>1.44 (1.26–1.65)</td>
<td><0.0001</td>
<td>1.16 (0.82–1.64)</td>
<td>0.4103</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>32.9% (3,565 of 10,843)</td>
<td>1.25 (1.09–1.43)</td>
<td>0.0011</td>
<td>0.99 (0.80–1.24)</td>
<td>0.9546</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>77.3% (4,426 of 5,724)</td>
<td>1.50 (1.28–1.75)</td>
<td><0.0001</td>
<td>0.89 (0.67–1.18)</td>
<td>0.4081</td>
</tr>
<tr>
<td>MVRR + CABG</td>
<td>None-mild</td>
<td>2.4% (485 of 20,218)</td>
<td>1.54 (1.27–1.86)</td>
<td><0.0001</td>
<td>1.31 (0.92–1.88)</td>
<td>0.1376</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>25.0% (1,096 of 4,379)</td>
<td>1.18 (1.01–1.38)</td>
<td>0.0335</td>
<td>0.86 (0.63–1.18)</td>
<td>0.3511</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>69.9% (1,228 of 1,758)</td>
<td>1.46 (1.14–1.86)</td>
<td>0.0025</td>
<td>1.17 (0.81–1.70)</td>
<td>0.3915</td>
</tr>
</tbody>
</table>
FTR - Don’t Wait!

Bernal (JTCVS 130:2005)

Patients left with post-op FTR, when returned for redo TVr:
30 day mortality was 35%!

Highest op mortality in STS!!

Reoperations after tricuspid valve repair

José M. Bernal, MD, Dieter Morales, MD, Carmen Revuelta, MD, Javier Llorca, MD, Jesús Gutiérrez-Morlote, MD, and José M. Revuelta, MD
How to fix FTR: New Repair Thinking for Functional TR

Annuloplasty Rings

DeVega

Use a Ring!
Less recurrent TR and better Survival

702 patients - TVR
493 DeVega
209 Ring

Prevalence of Post-Operative 3+/4+ Tricuspid Regurgitation for Various Procedure Groups

Lines represent unadjusted estimates of TR grades of 3+/4+ for each procedure group over time.

Navia, JTCVS 2010
2º FTR - *Use a rigid ring!*

Carrier JHVD 13:2004

463 patients for TV repairs

Freedom from recurrence:

Rigid ring - 94%

Flexible - 72%

DeVega - 66%
TV ring risks / fears

AV Node injury

Dehiscence

Hemolysis

Endocarditis
“Classic” Tricuspid Technique

What time is it?

...time to injure the AV node!
New “How to”: Anatomy of FTR

Annular, RA, RV and LV geometry changes of TR
Carpentier. JTCVS 1974;67:53.
New FTR - “Rule of TEN”
FTR repair - “10”
“Ten stitches - Ten minutes”

“10 o’clock to 6 o’clock”
FTR - 10 stitches, 10 o’clock to 6 o’clock
Identical tricuspid ring sizing in simultaneous functional tricuspid and mitral valve repair: A simple and effective strategy

Lynn C. Huffman, MD, Jennifer S. Nelson, MD, April N. Lehman, BS, Marguerite C. Krajacic, RN, BSN, and Steven F. Bolling, MD

Association class was III or IV in 81% (43) and mean left ventricular ejection fraction was 33% ± 2.2%. All patients had moderate or greater mitral regurgitation preoperatively and moderate to severe tricuspid regurgitation or a preoperative tricuspid annulus diameter greater than 40 mm. There was no 30-day mortality. Mean immediate postoperative tricuspid valve gradient was 1.75 ± 0.12 mm Hg and was 2.3 ± 0.19 mm Hg at 4 weeks. Four weeks postoperatively 88% (42/48) of patients had tricuspid regurgitation considered to be mild or less. There was no significant decline in right ventricular function by echocardiography over this time period.
What size?

NORMAL TRICUSPID ANNULAR DIMENSION

2.8 ± 0.5 cm!

"Undersized" TV repair for FTR

Undersized Tricuspid Annuloplasty Rings
Optimally Treat Functional Tricuspid Regurgitation

Mehrdad Ghoreishi, MD, Jamie M. Brown, MD, Craig E. Stauffer, BS, Cindi A. Young, Mary J. Byron, PA-C, Bartley P. Griffith, MD, and James S. Gammie, MD
Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland

Background. In contrast to mitral valve repair, residual and recurrent regurgitation after tricuspid valve (TV) repair for functional tricuspid regurgitation (TR) is common. We have systematically used undersized, rigid 3-dimensional annuloplasty rings to treat functional TR.

Methods. From March 2006 to October 2009, 101 consecutive patients with moderate or greater functional TR underwent TV repair with an undersized rigid 3-dimensional annuloplasty ring. All patients had a predischarge echocardiography evaluation in a core echocardiography laboratory. Follow-up echocardiography was available for 96% of surviving patients. Mean follow-up was 17 ± 9 months.

Results. Twenty-nine percent of patients had undergone previous cardiac operations, 74% were in New York Heart Association functional class III or IV, and 48% had atrial fibrillation. Mitral valve operations were performed in 93 patients, aortic valve operations in 17, coronary artery bypass grafting in 21, and CryoMaze procedures in 40. Size 26 or 28 rigid tricuspid annuloplasty rings were used in 88% of patients, and no ring larger than a 28 has been used since November 2008. The operative mortality rate was 6% (n = 6). Freedom from significant TR (TR > moderate) at hospital discharge, as assessed by the clinical core laboratory, was 97%. Only 3% of patients had TR greater than moderate during follow-up. No patient required TV reoperation. New postoperative permanent pacemakers were inserted in 3 patients.

Conclusions. Tricuspid valve repair with an undersized (size 26 or 28) rigid 3-dimensional annuloplasty ring is the method of choice for reliable and durable treatment of functional TR.

(Ann Thorac Surg 2011;92:89–96)
© 2011 by The Society of Thoracic Surgeons

Actually RE-NORMAL size!
“Undersized” TV repair for FTR

- Preoperative
- Predischarge
- Follow-up (mean = 1 yr)
Will I get Stenosis? NO! - Πr^2

$26 \text{ mm} = 4 \text{ cm}^2$

2-3 mm gradient

The tricuspid valve: current perspective and evolving management of tricuspid regurgitation.

What about RV failure?
Improvement in Right Ventricular Systolic Function After Surgical Correction of Isolated Tricuspid Regurgitation

Debabrata Mukherjee, MD, Simone Nader, MD, Arrel Olano, MD, Mario J. Garcia, MD, and Brian P. Griffin, MD, Cleveland, Ohio

The RV gets better!
Tricuspid Annuloplasty Concomitant with Left-Sided Cardiac Surgery: Effects on Right Ventricular Remodeling

Philippe B. Bertrand MD MScab, Gille Koppers MScb, Frederik H. Verbrugge MDab, Wilfried Mullens MD PhDab, Rozette Reyskens RNa, Herbert Gutermann MDa, Chris Van Kerrebroeck MD PhDa, Robert Dion MD PhDa, Pieter Vandervoort MDab, David Verhaert MDa

Table 2 – Pre- and Postoperative Echocardiographic Measurements

<table>
<thead>
<tr>
<th>Variables</th>
<th>TVP group (n=45)</th>
<th>Control group (n=33)</th>
<th>p-value</th>
<th>p-value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean follow-up, months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV end-diastolic area, indexed</td>
<td>12.0 ± 3.5</td>
<td>11.8 ± 3.6</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV sphericity index</td>
<td>1.99 ± 0.33</td>
<td>2.21 ± 0.42</td>
<td>p=0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV annulus diameter, cm</td>
<td>4.18 ± 0.63</td>
<td>TVP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR grade</td>
<td>2.0 ± 1.1</td>
<td>0.48 ± 0.70</td>
<td>p<0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right atrial area, cm2</td>
<td>20.0 ± 7.2</td>
<td>14.4 ± 4.1</td>
<td>p<0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic pulmonary artery pressure, mmHg</td>
<td>43.3 ± 16.8</td>
<td>37.4 ± 9.4</td>
<td>p=0.185*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*paired samples: only n=21 available in TVP group (due to difficulty in measurement of echocardiographic TR signal post-TVP)

When FTR is fixed, the RV gets better!
Functional tricuspid regurgitation at the time of mitral valve repair for degenerative leaflet prolapse: The case for a selective approach

Oguz Yilmaz, MD, a Rakesh M. Suri, MD, DPhil, a Joseph A. Dearani, MD, a Thoralf M. Sundt III, MD, a Richard C. Daly, MD, a Harold M. Burkhart, MD, a Zhuo Li, MS, b Maurice Enriquez-Sarano, MD, c and Hartzell V. Schaff, MD a

Results: In 699 patients who underwent mitral valve repair for severe mitral regurgitation, mean age was 60.4 years and 459 (66%) were male. At the time of mitral valve repair, tricuspid valve regurgitation was grade 3 or more in 115 (16%) patients and less than grade 3 in 584 (84%) patients. After mitral valve repair, overall grade of tricuspid valve regurgitation decreased significantly within the first year (P = .01). In patients with grade 3 regurgitation or more, the grade decreased at dismissal and until the third year (P < .001). Female sex, preoperative atrial fibrillation, and diabetes mellitus were independent risk factors for increased tricuspid valve regurgitation with time; preoperative regurgitation of grade 3 or more independently predicted decreased time-to-event. Only 1 patient required tricuspid reoperation 4.5 years after mitral repair.

Conclusions: Clinically silent nonsevere tricuspid valve regurgitation in patients with degenerative mitral valve disease is unlikely to progress after mitral valve repair. Tricuspid valve surgery is rarely necessary for most patients undergoing repair of isolated mitral valve prolapse. (J Thorac Cardiovasc Surg 2011;142:608-13)
Residual Tricuspid Insufficiency

DON’T LEAVE MOD TR !!

Lack of reop is not the same as a good outcome !
“I don’t see these patients come back”…
Mod TR Increases Mortality

Fix TR ... if you are there?

Current Guidelines for TV Surgery

<table>
<thead>
<tr>
<th>2014 ACC/AHA</th>
<th>2012 ESC/EACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Class I</td>
</tr>
<tr>
<td>• Severe TR in a patient undergoing left sided valve surgery</td>
<td>• Severe TR in a patient undergoing left-sided valve surgery</td>
</tr>
<tr>
<td>Class IIa</td>
<td>Class IIa</td>
</tr>
<tr>
<td>• TV repair is beneficial for Mild TR when there is tricuspid annular dilatation or right HF</td>
<td>• Moderate 2nd TR with dilated tricuspid annulus (>40 mm) in a patient undergoing left-sided valve surgery or with RV dilation/dysfunction</td>
</tr>
<tr>
<td>Class IIb</td>
<td></td>
</tr>
<tr>
<td>• TV repair considered for FTR in presence of PH or RV dilation/dysfunction</td>
<td></td>
</tr>
</tbody>
</table>

Facts?
CONCLUSIONS In patients with moderate TR or tricuspid annular dilation who were undergoing degenerative mitral repair, concomitant tricuspid annuloplasty is safe, effective, and associated with improved long-term right-sided remodeling. Routine treatment of moderate TR or tricuspid annular dilation at the time of MV repair appears to be beneficial. (J Am Coll Cardiol 2015;65:1931-8) © 2015 by the American College of Cardiology Foundation.
Outcomes of Guideline directed Repair of FTR performed during MV surgery

Ward, Romano, Bolling: AATS 2017

262 pts TVr, mod/sev or ≤ moderate TR,
26/28/30 ring

No mortality, No TS, RV improved

1% progression to severe TR,

- 2.6% de novo PPM rate
- DMR repair
- Mod TR or mild TR with annular dilation > 40
- Randomized: ±TV annuloplasty
Percutaneous Implications for TR

2D
64%
C 50
P Off
Gen

CF
59%
4.4 MHz
WF High
Med

Dist 0.470 cm
Area 0.174 cm²
88 bpm
FTR Surgery: Percutaneous Implications

TV Perc Rings!
FTR: Percutaneous “Not” Rings
Tricuspid Regurgitation

4-TECH

Step 1: Access via Inferior Vena Cava

Step 2: Aim at the anterior annulus

Step 3: Implant the anchor on the annulus

Step 4: Pull tension, check, secure.
Tricuspid Regurgitation
Mitralign... Trialign
FTR: Percutaneous “other things”

More data needed...
FTR: when, why and how NOW!

TR not important… NO
Look for TR in OR… NO
Not much TR around… NO
Repair Mitral, TR goes away … NO
Adds operative mortality to do a TVr… NO
Don’t know how to… NO
RV will fail… NO
Will get TS… NO
Won’t make long-term difference… NO
Guidelines are vague… NO

FTR : Don’t ignore it…
FTR: *Put a ring on it!*