

Update on Transcatheter MV Replacement

Vinod H. Thourani, MD

Professor of Surgery Chairman, Department Cardiac Surgery MedStar Heart and Vascular Institute Georgetown University School of Medicine

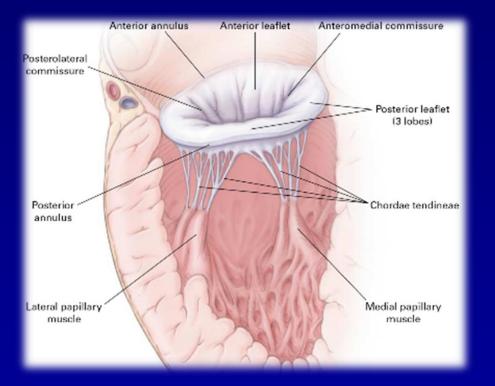
STS/EACTS Latin American Meeting November, 2018

Disclosures

- Abbott Vascular: Advisory Board / Research
 - National Co-PI: Tendyne in Mitral MAC Trial
 - Executive Committee: SUMMIT trial
- Boston Scientific: Consultant / Research
 - National Co-PI: REPRISE IV trials
- Claret Medical: Consultant
- Cryolife: Consultant / Research
- Edwards Lifesciences: Advisory Board / Research
 - National Co-PI: ACTIVE Trial (Cardioband)
- Gore Vascular: Consultant
- Jenavalve: Consultant / Research
 - National Co-PI: TAVR trial

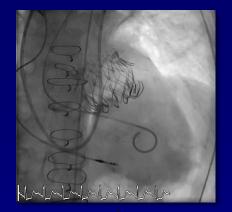
In 2018, The Toolbox for MR

TAVR vs. TMVR


Annulus Size, Leaflet Calcification

Annulus Size, Shape, Excursion, Leaflet Size, Thickness, Tenting Sub-valvular Apparatus Circumflex Coronary Artery LV Size, Geometry, Function Risk of SAM Dynamic environment

Design Goals for TMVR



- Complete elimination of MR
- Minimize risk of LVOT obstruction

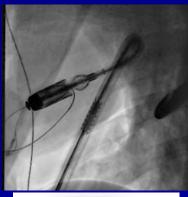
MedStar Heart & Vascular Institute

- Minimize risk of paravalvular leak
- Address wide range of patient sizes
- Durability
- Ease of implant
- Trans-septal

Transcatheter MVR Systems in Human Use

HighLife

Caisson



NaviGate

Neovasc Tiara

Mitraltech Cardiovalve

TMVR Landscape – 2018 (partial)

Braile Biomedica

Braile Biomedica

CardiAQ Edwards

Cephea

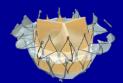
Intrepid Medtronic

M-Valve

HighLife

SATURN

TMVR


Navigate

Neovasc Tiara

PermaValve MID

Sinomed

Tendyne Abbott

Mitraltech

Caisson

Sapien M3 Edwards

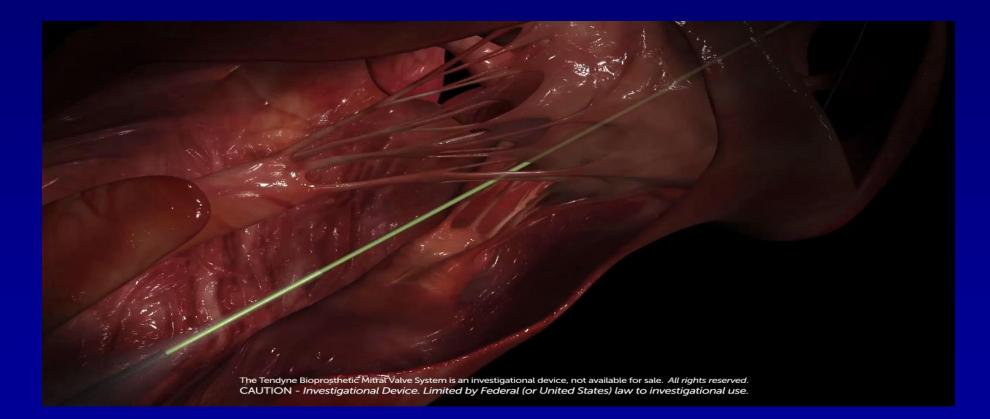
Design features

Courtesy of John Webb

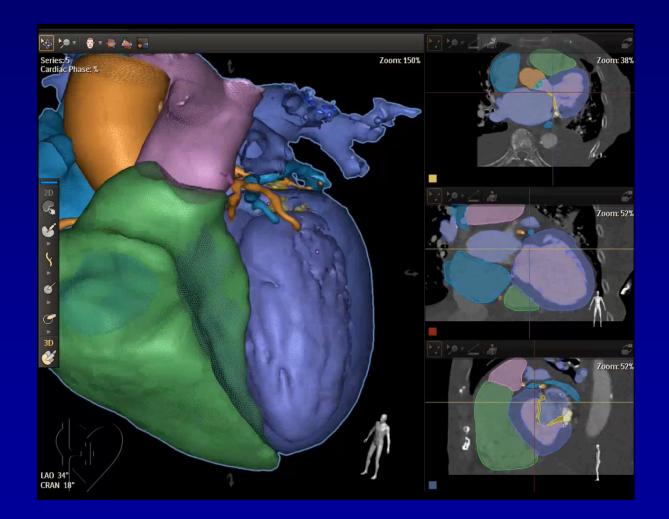
	CardiAQ	Fortis	Tiara	Tendyne	Intrepid	HighLife	Caisson
Nitinol frame	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Trileaflet pericardial valve	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Asymmetric valve	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark
Fixation	anchors	paddles	anchors	tether	barbs	ring	feet
Apical access	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Transseptal access	\checkmark	-	-	working on it	working	working	\checkmark
Recapturable	-	-	partly	fully	partly	party	fully

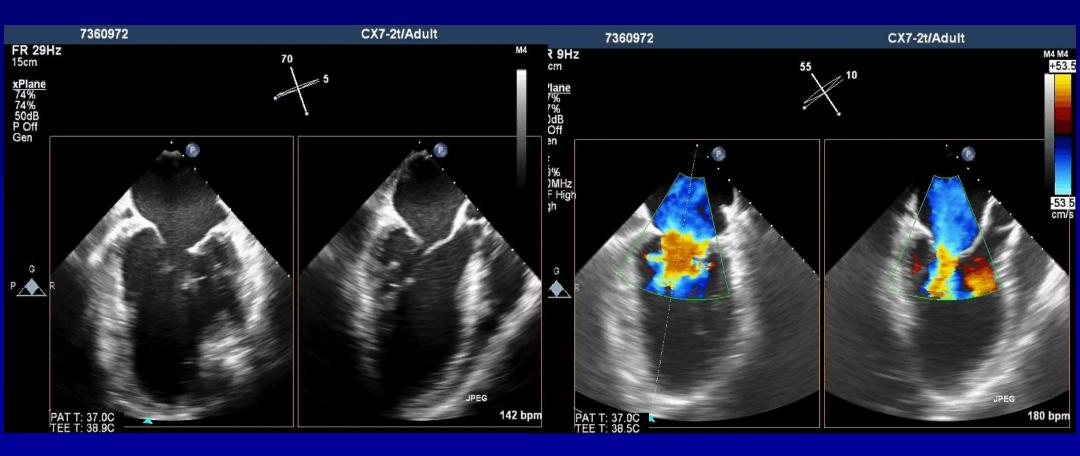
Transcatheter Mitral Valves in Early Clinical Studies

	Study Type	Region	Status
CardiAQ-Edwards	Early Feasibility	US	Recruiting
M3-Edwards	Early Feasibility	North America	Recruiting
Tendyne-Abbott Vasc	Pivotal Trial	Global	Recruiting
Intrepid-Medtronic	Pivotal Trial	Global	Recruiting
Tiara	Early Feasibility	US, Canada, EU	Recruiting
Caisson-LivaNova	Early Feasibility	US	Recruiting

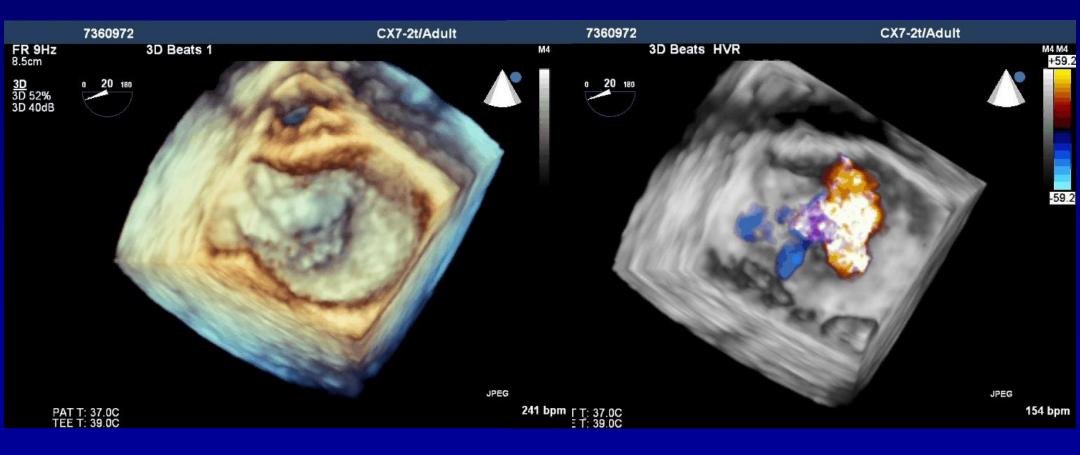

Transcatheter Mitral Valves in Early Clinical Studies

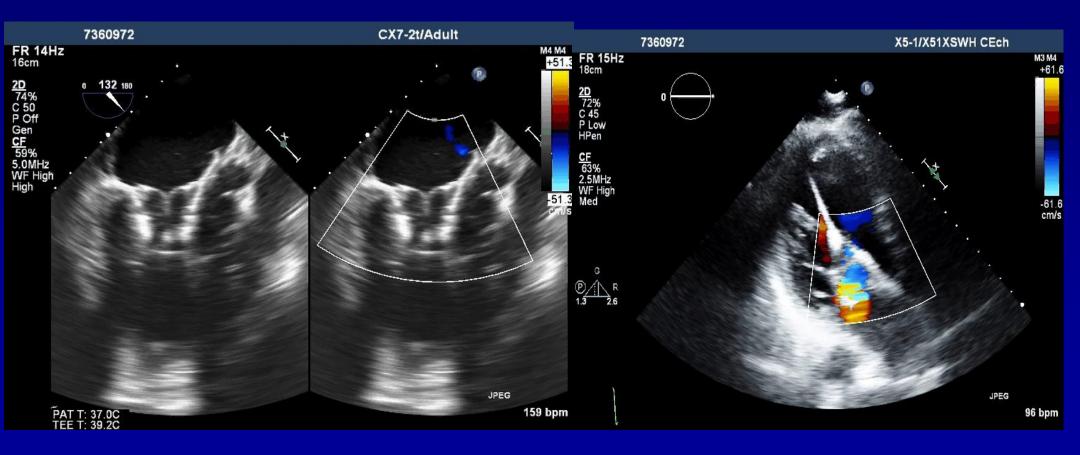
	Both Transseptal and Transapical		Transseptal Only		
	CardiAQ- Edwards	Tendyne	Intrepid	Tiara	Caisson
Delivery System Size	33 Fr	32 Fr	35 Fr	32 Fr	31 Fr
Valve Size	40 mm	27 mm	27 mm	35, 40 mm	27 mm

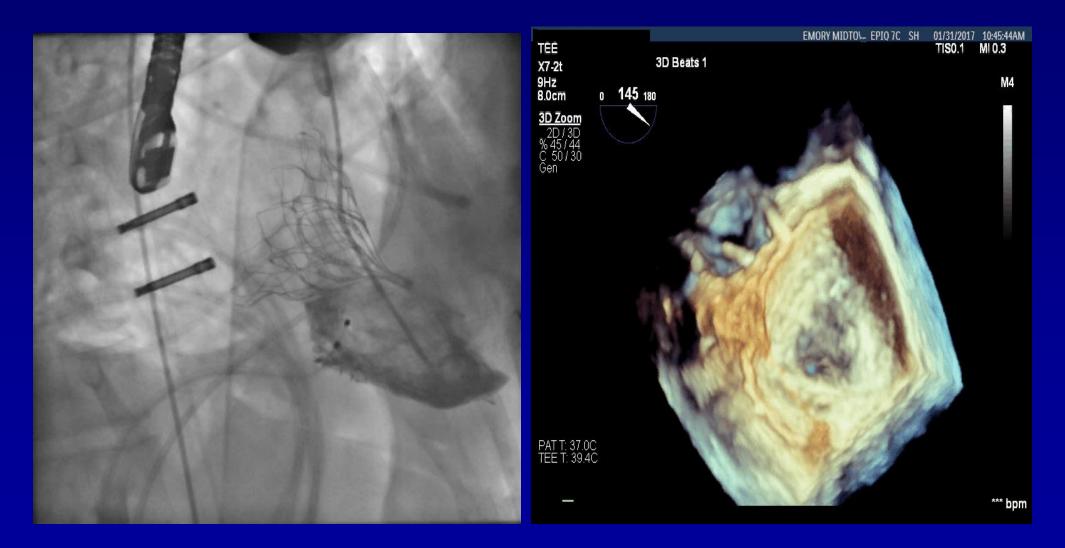

Abbott Tendyne Implant Video


Importance of accurate sizing

Courtesy of Carlos Ruiz, MD







Abbott Tendyne Implant Video

Tendyne Valve

Courtesy of David Muller

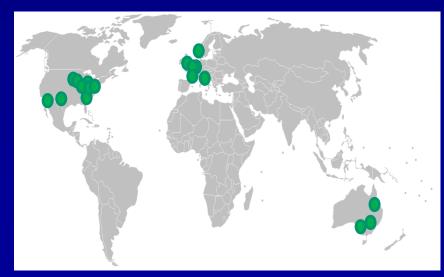
Abbott Tendyne Implant

Tendyne TMVI Trials

Global Feasibility Study (n=30)

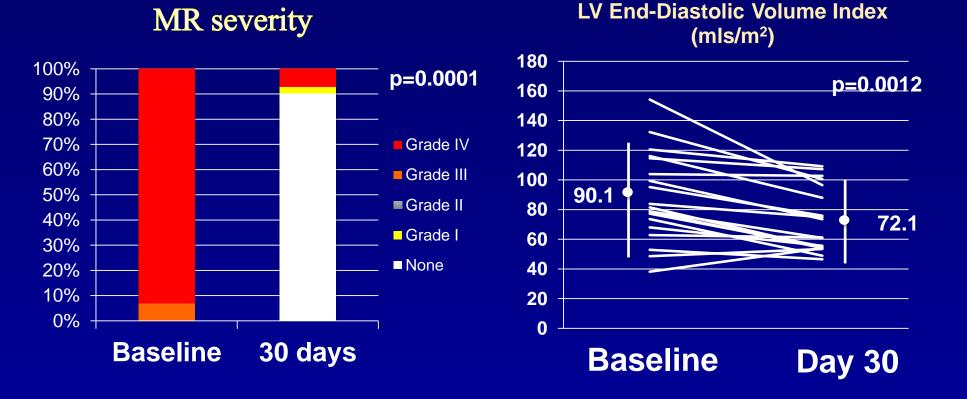
• 8 sites, Australia, US and Norway

Expanded Feasibility (CE Mark) Study (n=110)


- Up to 25 centers (currently 23)
- Study expansion pending

Compassionate Use (n=15)

Pivotal randomized trial


- Total >110 cases
- Longest follow-up 3.0 yrs

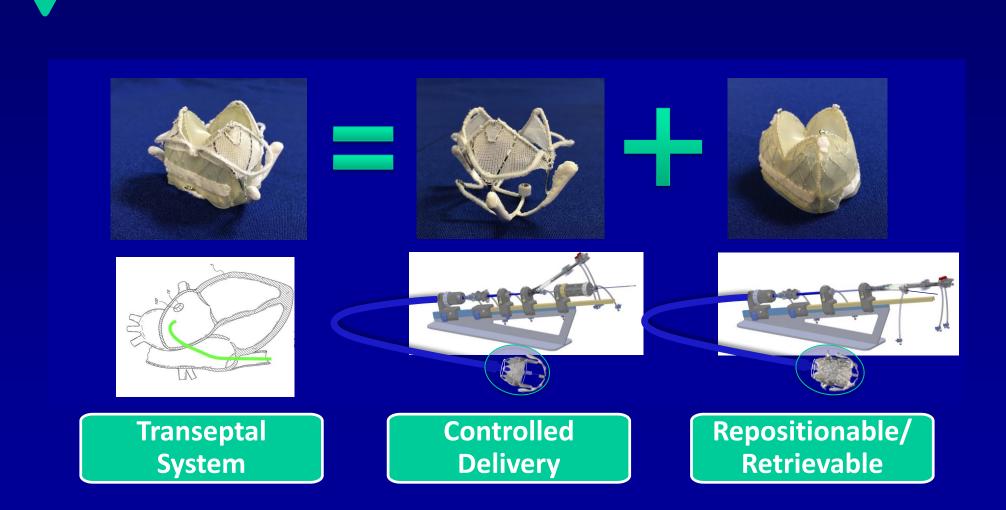
30 days post-TMVI (n=30)

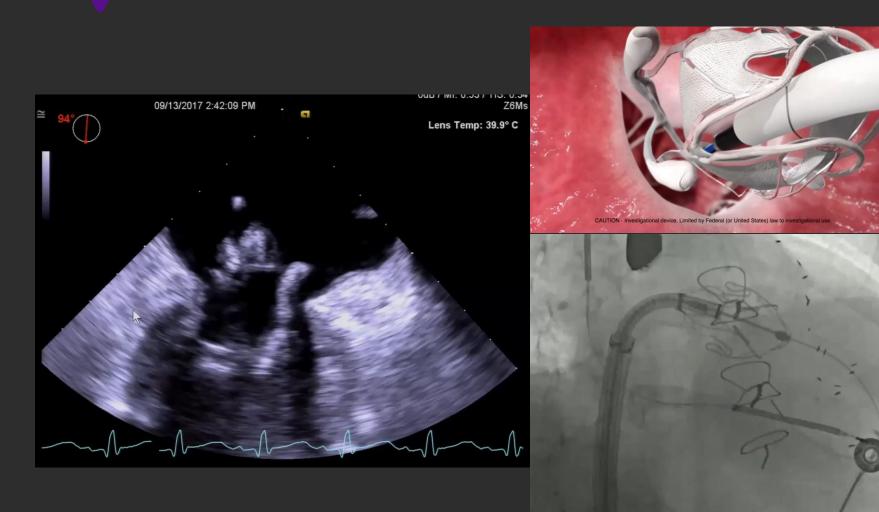
Muller DW et al JACC 2017

Mortality 3.3% Stroke/MI 0.0%

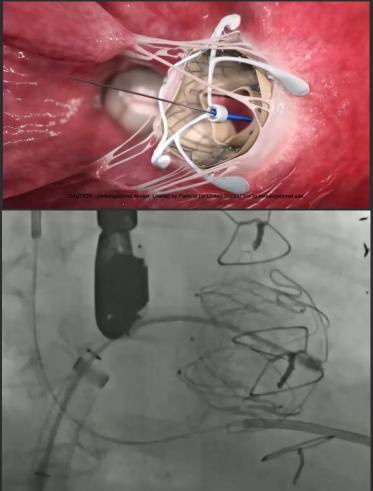
Tendyne GFS: Patient Overview (n=75)

Characteristics	Primary (n=20)	Secondary (n=55)	
Age	74.5 <u>+</u> 8.6	74.8 <u>+</u> 8.7	
Female gender	9/20 (45%)	16/55 (29%)	
NYHA III/IV	15/20 (75%)	33/54 (61%)	
STS PROM >8	7/20 (35%)	20/55 (36%)	
LVEF	52%	47%	
Pulmonary HT	58%	38%	
Atrial fibrillation	75%	60%	

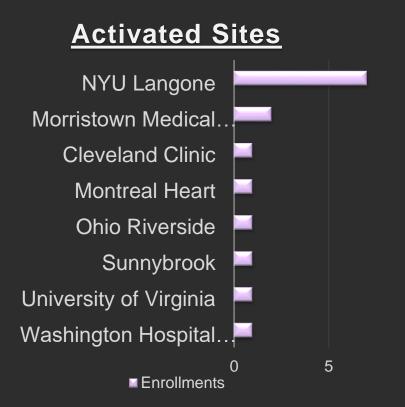

Tendyne GFS: 30 day outcomes (n=75)


Success	80% (60/75)
Non-success	20% (15/75)
Mortality	6.7% (5/75)
Implant not Successful	4.0% (3/75)
LVOT obstruction	1.3% (1/75)
Valve not seated properly	1.3% (1/75)
Patient became unstable, procedure not completed, unplanned circulatory support	1.3% (1/75)
Re-intervention	2.6% (2/75)
Reposition device - resolve PVL	1.3% (1/75)
Bleeding with re-operation	1.3% (1/75)
Valve performance	6.7% (5/75)
Mitral valve gradient > 6 mmHg	5.3% (4/75)
Malpositioning/paravalvular leak	1.3% (1/75)

Caisson TMVR System


Engaging the Annulus

Final Deployment



Early Clinical Patient Summary Data

10

Patient Characterist	ics (n=15)
Gender (female)	71%
LVEF % (mean/SD)	44.5 ± 12.5
STS predicted risk % (mean/SD)	8.1 ± 3.6
NYHA III-IV (% pt)	78.6%
eGFR (mL/min/1.73m ²)	49.7 ± 16.3
BMI (kg/m ²)	24.7 ± 4.2
MV Peak Velocity (m/s)	1.44 ± 0.29
MV Mean Gradient (mmHg)	3.13 ± 1.14
Categorization of MR	
Degenerative MR	14% (2)
Functional MR	57% (8)
Mixed MR	29% (4)

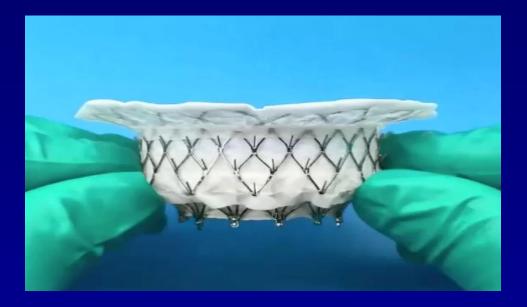
Early Clinical Results

15 patients enrolled with 12 successful implants

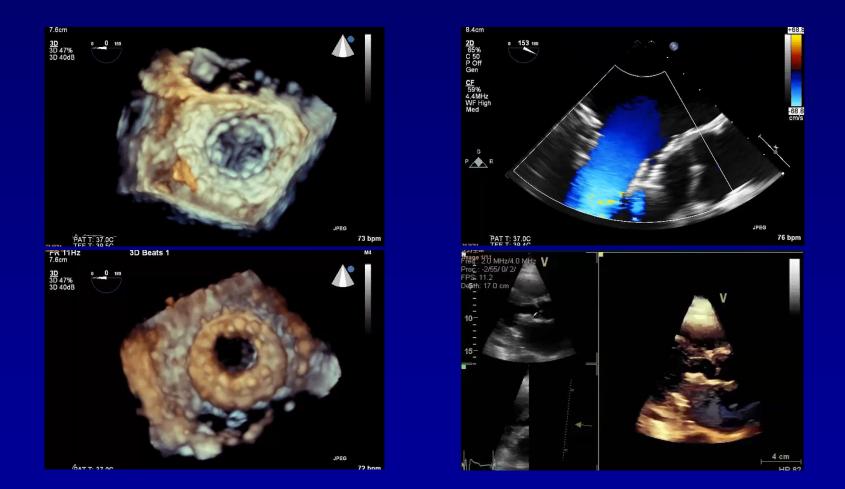
Subject			MR Grade			Ejection Fraction %		NYHA	
	Days Since Implant	Baseline	Post Procedure ⁽²⁾	Last Follow- up ⁽²⁾	Baseline	Last Follow- up	Baseline	Last Follow- up	
01 ⁽¹⁾	28	4+	Trace	1+	32.6	N/A	III	N/A	
02	480	3+	0	0	57.3	60.2	III	I	
03 (SAP)	460	4+	0	0	28.0	N/A	III	N/A	
04	453	4+	0	0	57.9	61.6	II	Ι	
05	349	4+	Trace	0	58.9	46.7		I	
06	327	4+	Trace	0	47.6	26.8	IV	I	
07 ⁽³⁾	20	3+	1+	N/A	56.0	56.6		N/A	
08	207	3+	1+	0	29.4	30.0	IV	I	
09 (4)	3	4+	Trace	N/A	36.4	N/A	III	N/A	
10	102	4+	Trace	0	46.0	40.0	 (5)	ll	
11	89	3+	0	0	47.5	41.0		III	
12	47	4+	0	0	29.7	19.9		I	

In Follow-up Converted to SMVR Deceased 1: Early Death (Day 28) due to Sepsis 2: Grade inclusive of PVL 3: Conversion to SMVR due to excess PVL 4: Early Death (Day 3) following hypotension and PVL 5: Following medical management, NYHA III-IV at Screening

Device Retrieval: Pt- 02-004


- Leaflet immobility and small orifice area led to inadequate Anchor stability
- Device fully retrieved. Patient received MitraClip treatment in same clinical setting.

MEDTRONIC INTREPIDTM TMVR DUAL STENT DESIGN



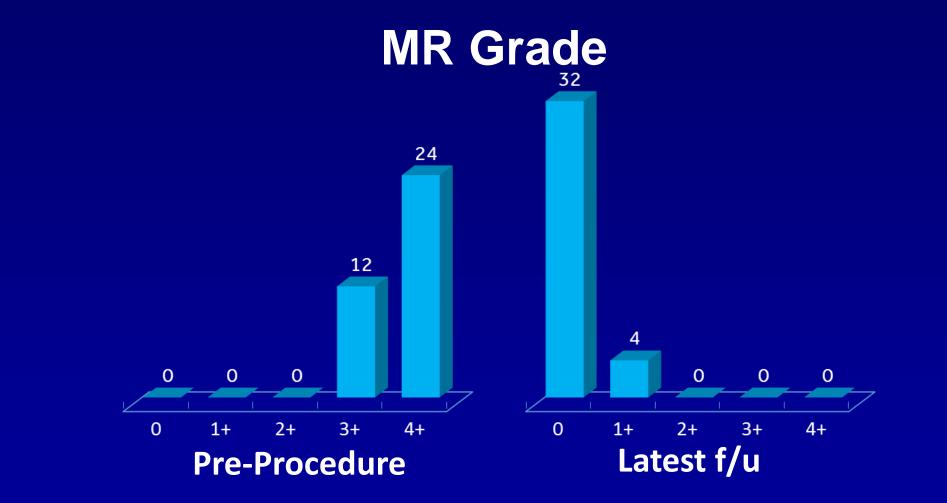
- Conformable Outer Stent engages the annulus and leaflets providing fixation & sealing while isolating the inner stent from the dynamic anatomy
- Circular Inner Stent houses a 27 mm tricuspid bovine pericardium valve
- Flexible Brim aids imaging during delivery & subsequent healing

Medtronic intrepidTM TMVI

CAUTION: INVESTIGATIONAL DEVICE. LIMITED BY FEDERAL LAW (USA) TO INVESTIGATIONAL USE.

Procedural Outcomes (n=39)

Successful Deployment	36/38 ¹	
Apical Access Time (min)	31	(range: 17-53)
Deployment Time (min)	15	(range: 4-29)
Mean LVOT Gradient ² (mmHg)	2	(range: 0-4)
Mean MV Gradient ² (mmHg)	4	(range: 0-7)

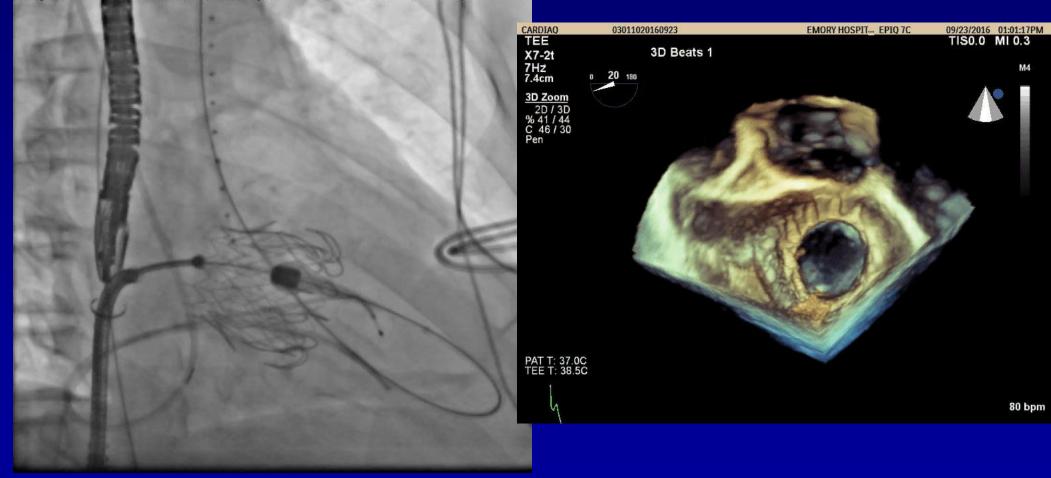

1 - in one patient deployment was not attempted 2 - latest follow-up

CAUTION: INVESTIGATIONAL DEVICE. LIMITED BY FEDERAL LAW (USA) TO INVESTIGATIONAL USE.

Edwards-CardiAQ

- Porcine pericardium
- Nitinol self expanding
- 12 X2 opposing atrial and ventricular anchors
 - Delivery
 - Transapical
 - Transseptal

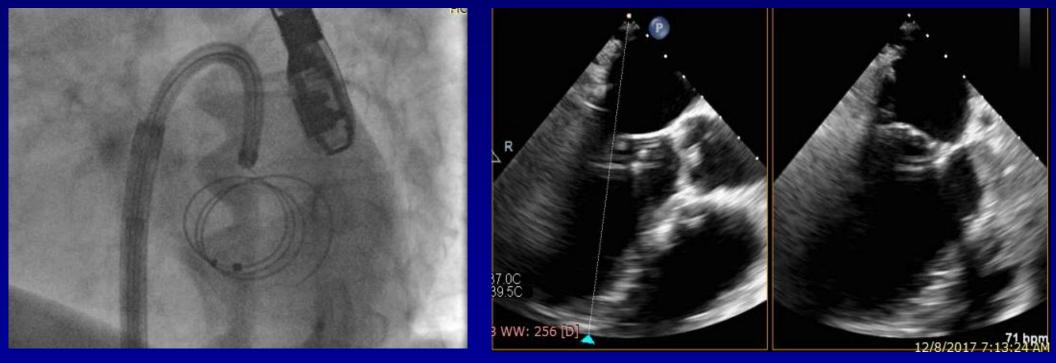
CardiAQ-Edwards TMVR



CardiAQ-Edwards TMVR: Transseptal

Valve Release

s Pegasus JPEG Lossiess, Decompress Pegasus JPEG Lossiess, Compress Pegasus JPEG



SAPIEN M3 System Deployment

SAPIEN M3 – Case Example Dock Deployment



Release of the atrial turn

Tee confirms dock encircling mitral leaflets

SAPIEN M3 – Case Example Valve Deployment

Intermountain Medical Center

SAPIEN M3 System Baseline Characteristics

	N=10
Age, years, mean	74.1
Male, n	4
STS*, %	4.9
NYHA Class III or IV, n	10
Coronary Artery Disease, n	5
Prior CABG, n	4
$eGFR \le 40, n$	3
MR Grade \geq 3, n	10
LVEF, mean, %	37.5

*MV Replacement

SAPIEN M3 System: Procedural Outcomes

Case #	Baseline LVEFProcedure LengthProcedural MR Grade			Procedural Adverse	30 day MR Grade	30 day Clinical	
	(%)	(hrs)	Pre	Post	Clinical Event		Status
1	60	4	Severe	Trace	None	Severe ⁽¹⁾	Alive
2	33	7.3(2)	Moderate-Severe Mild		Chordal Rupture	Trace	Alive
3	35	2.5	Severe	Mild	None	None	Alive
4	30	2	Moderate-Sever e	None	None	None	Alive
5	32	2.1	Severe	None	None	None	Alive
6	42	1.8	Severe	Trace	None	Trace	Alive
7	32	3.7	Severe	Mild	None	Trace	Alive
8	30	3.8	Severe	Mild	None	Trace	Alive
9	41	2.5	Moderate-Severe	None	None	None	Alive
10	40	1.3	Moderate-Severe	None	None	Mild	Alive

1PVL was closed with a plug which reduced post-30 day MR to 2+

²Chordal rupture during dock deployment resulted in severe PVL; closed intra-procedurally with plugx2; stroke (POD 02)

SAPIEN M3 System First 10 Cases - Data Summary

	N=10	Clinical Outcomes at 30 days*	N=10
Technical Success*	9	All-cause Mortality	0
Alive	10	All Stroke	1(1)
Successful access/Delivery	10	Rehospitalization (device/procedure	0
Deployment	10	related)	
Freedom from Re-	9 (1)	Hemolysis	0
intervention	,	LVOT Obstruction	0

There was no Conversion to Surgery, Device Embolization, Device Migration or Implantation of more than one valve.

*Site reported

¹Case #2: Chordal rupture during dock deployment resulted in severe PVL; closed intra-procedurally with plugx2; stroke (POD 02)

TMVR - Interventional Perspectives ANATOMY Summary

- "Hostile" anatomy resulted in a variety of valve designs secondary to the excessive screen failures in the early TMVR experiences.
- Major culprits are:
 - annulus size (too large or too small)
 - neo-LVOT size (too small)
 - MAC (severity, location and interaction with leaflets),
 - other considerations (e.g. severe TR with RV dysfunction).
- No design thus far has been seen as a clear winner

Conclusions

- While surgical results with primary MR are excellent, much is to be desired for functional MR
- The era of transcatheter valve technology will be a great complement to the management of MR
- The heart team is required to decide the most appropriate therapy for this complex patients
- Patients will benefit from valve centers that are poised to offer both surgical and transcatheter options

Vinod H. Thourani, MD

404-274-3136

vinod.h.thourani@medstar.net