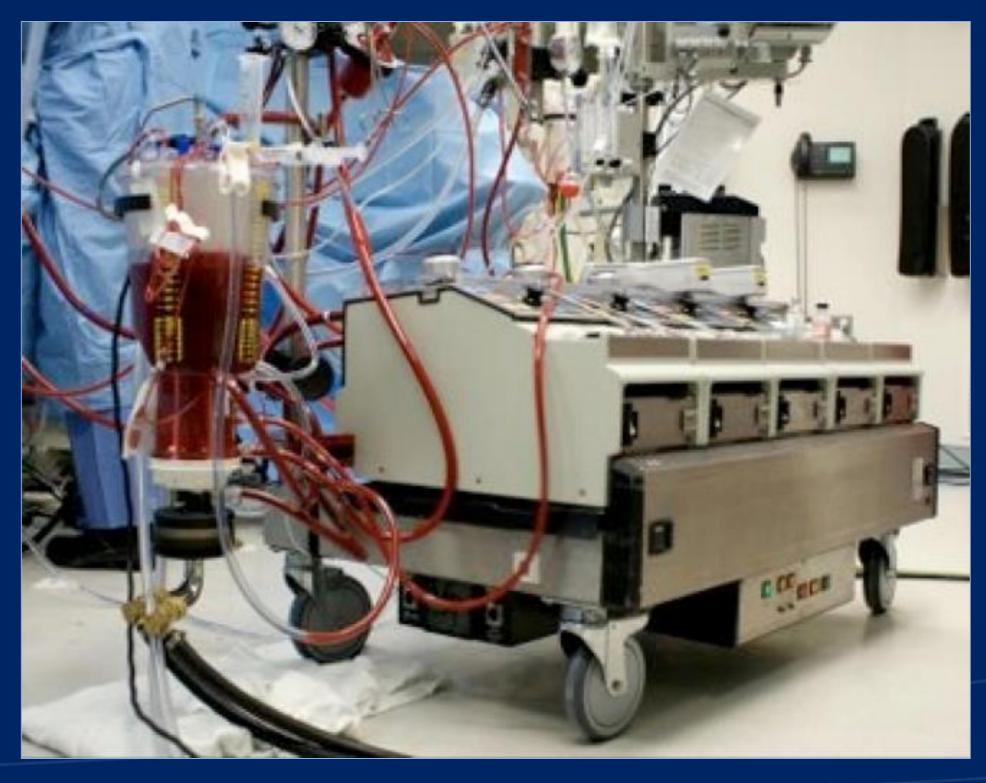

What Is The Best Device for Post Cardiotomy Short-Term Support? ECMO versus CentriMag versus Impella

Ezequiel J Molina, MD

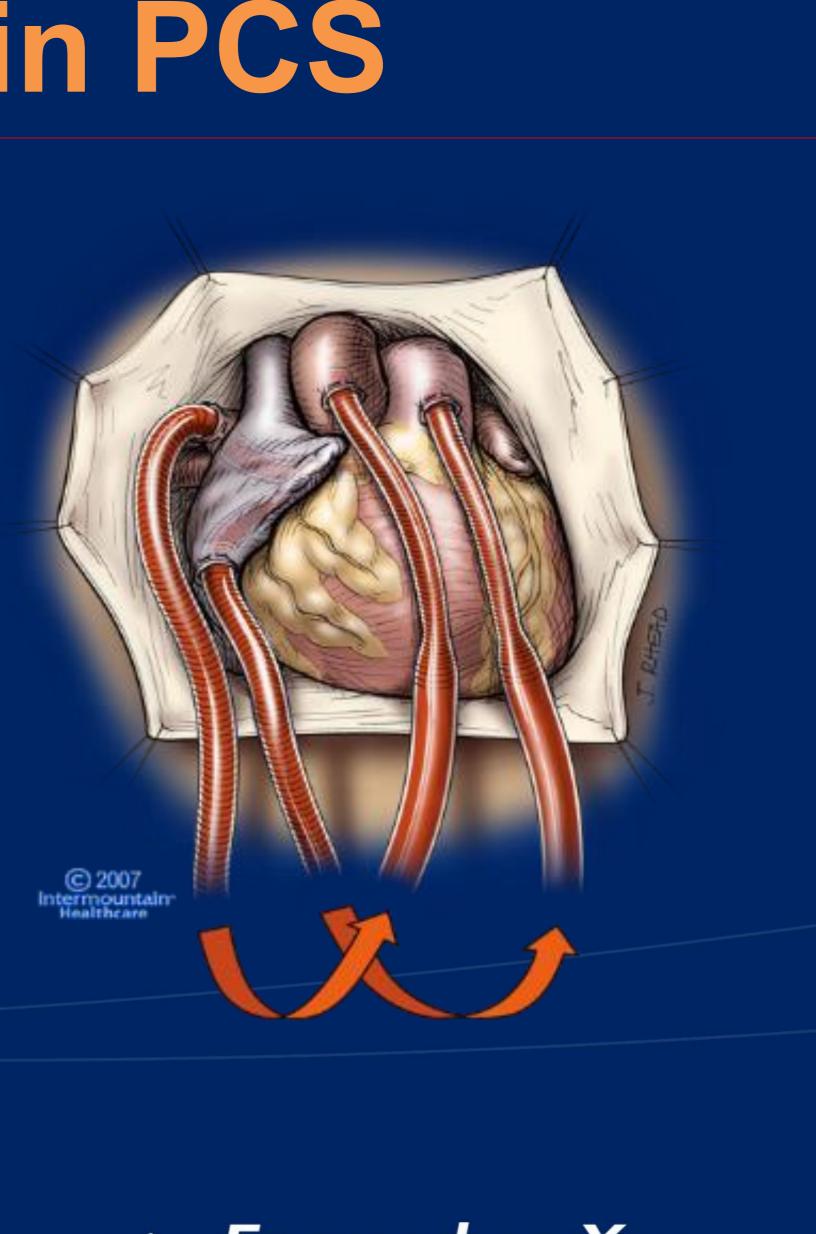
Surgical Director, Advanced Heart Failure and Transplant Program MedStar Heart and Vascular Institute / MedStar Washington Hospital Center Washington, DC

No conflicts of Interest



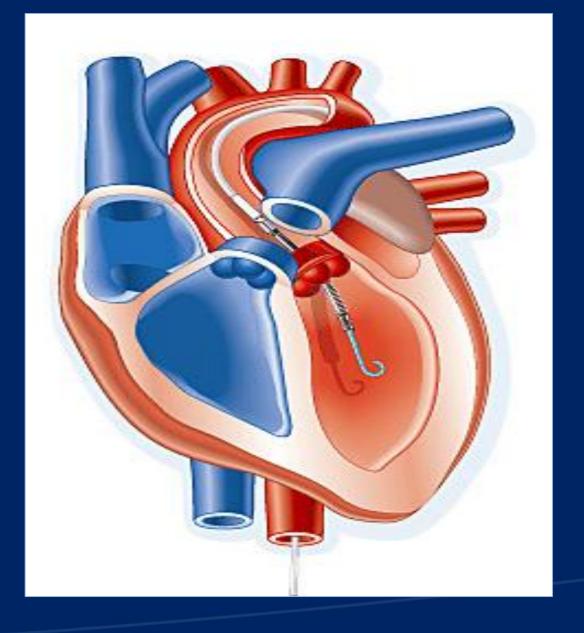
Post Cardiotomy Shock (PCS)

- Incidence 2-6 %
- 0.5-1.5 % refractory to inotropes and IABP
- ECMO, temporary LVADs, Impella
- Historically poor outcomes
- No randomized trials
- What can we do better?

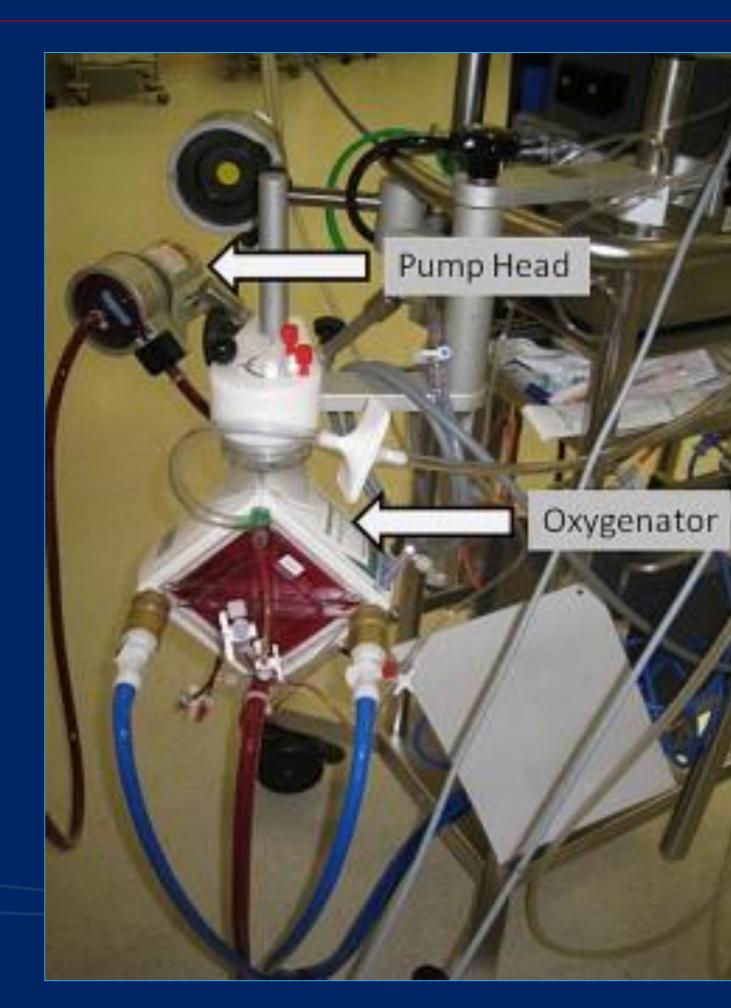

Ideal Support Device in PCS

- Easy and rapid implementation
- Provide robust hemodynamic support
- Provide biventricular and pulmonary support
- Safe to operate with low or no anticoagulation
- Allow ventricular recovery
- Easy to replace and explant
- Cost effective

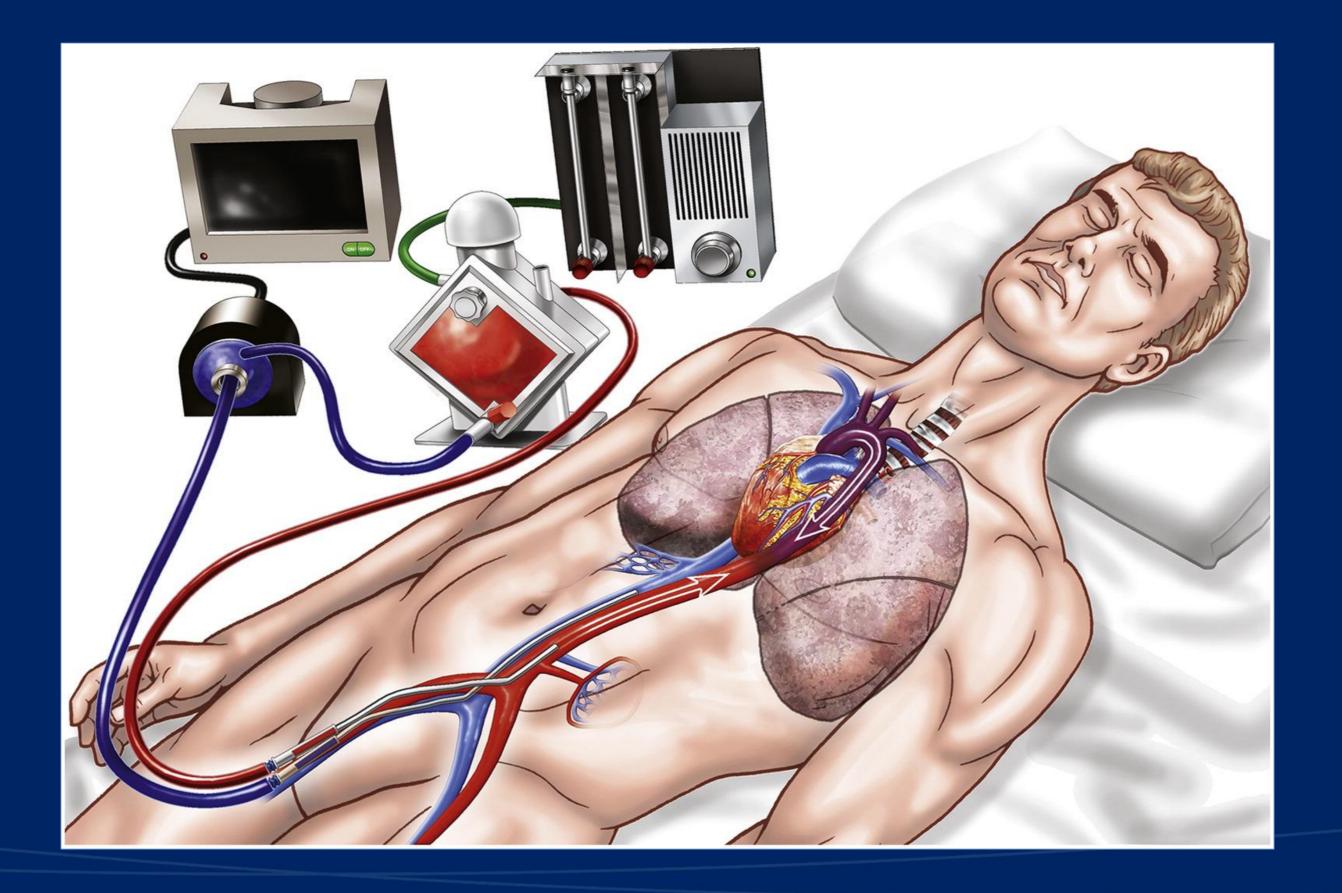
ipport nary support nticoagulation



- Etiology and severity of cardiogenic shock
- LV vs. RV or biventricular dysfunction
- Pulmonary edema and hypoxemia?
- Technology available at your institution
- Devices:
 - VA ECMO
 - CentriMag
 - Impella



Device Selection



VA ECMO

Abrams et al, J Am Coll Cardiol, 2014

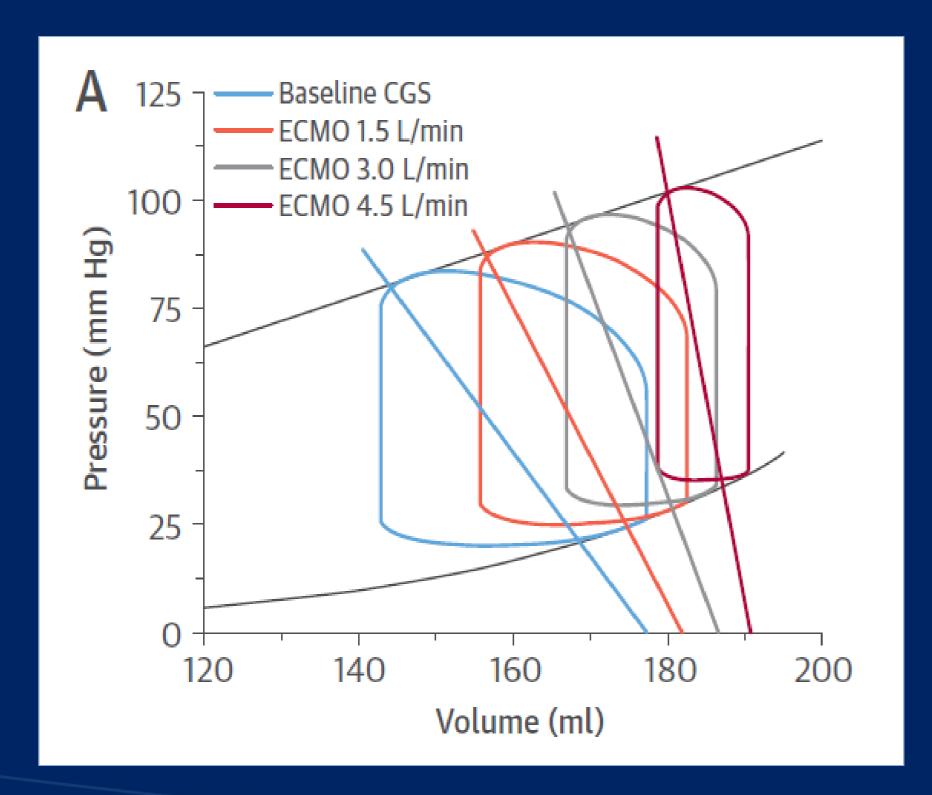
VA ECMO

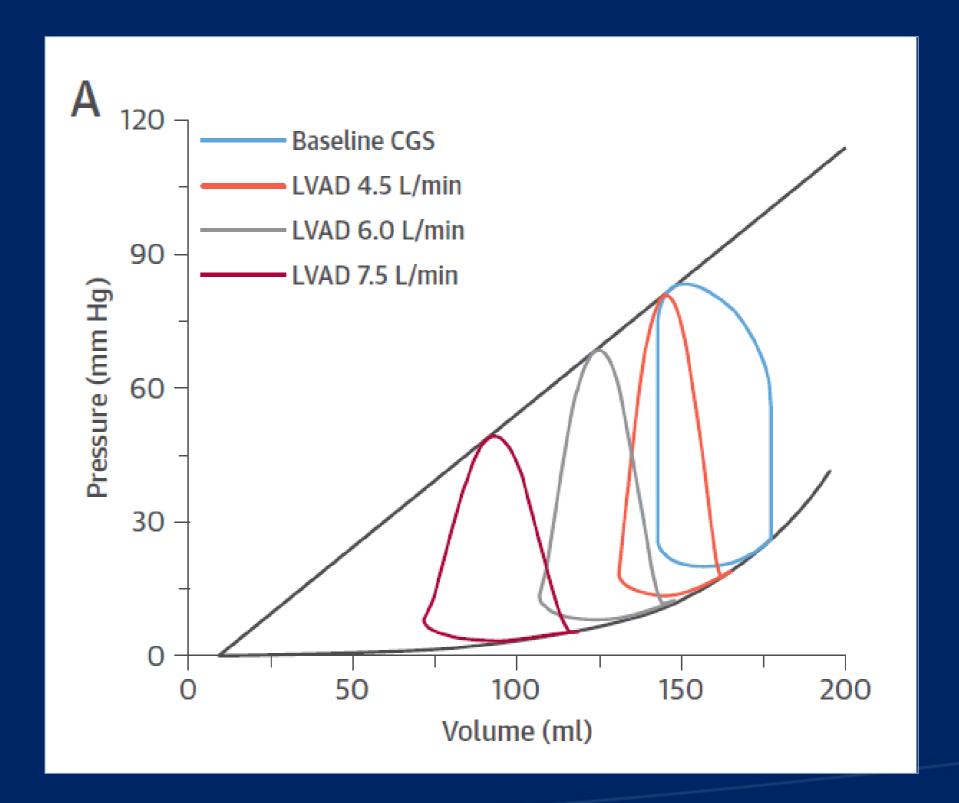
ECMO Advantages

- Allows for minimally invasive •
- Rapid bedside application
- Biventricular support
- Pulmonary support
- Low initial cost
- Transport capabilities

ECMO Advantages

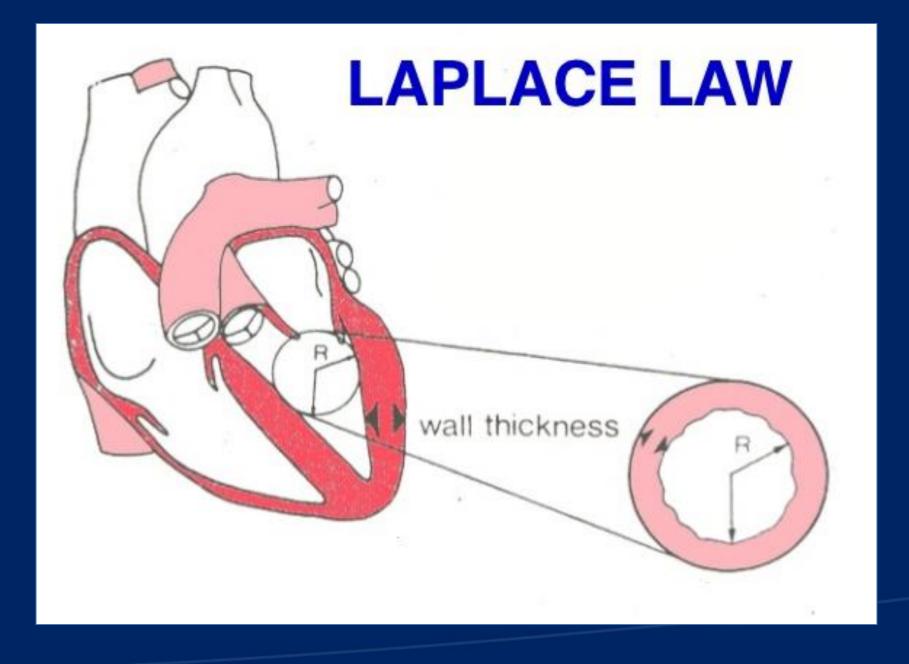
ECMO Disadvantages


- Historically high complication rates
- Bleeding / thrombosis / stroke / sepsis / limb ischemia LV distension / thrombosis / impaired recovery
- Cerebral hypoxia
- Immobilization
- Labor intensive
- High cost with prolonged support
- Limited duration of support



ECMO Disadvantages

Burkhoff et al, J Am Coll Cardiol. 2015



LV Distension

- Reduce flow
- Inotropes
- Minimize vasoconstrictors
- Central cannulation
- LV vent insertion
- Impella / Tandem Heart
- LVAD conversion

ECMO Studies in PCS

First Author	Year	Study Quality	No. of Patients	Mean Age (y)	ECMO Started at Surgery (%)	IABP (%)	Peripheral ECMO (%)	Mean ECMO Duration (d)	Weaned From ECMO (%)	Hospital Survival (%)	1-Year Surviva (%)
Ariyaratnam ⁵	2014	Poor	14	65.6	-	-	-	5.6	50	14	_
Bakhtiary ⁹	2008	Good	45	60.1	67	67	82	6.4	56	29	27
Beiras-Fernandez ¹⁰	2011	Good	73	49.3	-	49	-	4.4	-	23	—
Biancari ¹¹	2017	Good	148	65.4	51	32	60	6.4	—	36	31
Distelmaier ¹²	2016	Good	385	-	-	—	90	4	-	56	40
Elsharkawy ¹³	2010	Good	233	-	-	-	67	-	-	36	-
Hsu ¹⁴	2009	Good	51	63.0	_	100		7.5	53	33	29
Khorsandi ¹⁵	2016	Fair	15	-	-	_		5.4		27	_
Ko ¹⁶	2002	Good	76	56.8	51	58	80	10.5	55	26	25
Lamarche ¹⁷	2010	Good	24	52.5	67	_	63	-	63	25	_
Li ¹⁸	2015	Good	123	56.2	50	59	100	4.4	56	34	_
Liden ¹⁹	2009	Good	33	52.4		42	36	5.5	79	45	36
Liu ²⁰	2009	Good	14	55.7	64	71	100	3.0	64	50	43
Loforte ²¹	2014	Fair	155	55.0	_	100	51	8.2	57	51	-
Luo ²²	2009	Good	36	-	-	31	-	-	67	61	-
Meyer ²³	2009	Poor	18	50	_	-	100	4	67	39	-
Mikus ²⁴	2013	Fair	14	53.1	86	100	43	9	50	50	-
Papadopoulos ²⁵	2015	Good	360	62	-	22	90	7	58	28	26
Park ²⁶	2014	Good	115	61.7	36	—	100	3.0	41	28	-
Peigh ²⁷	2015	Good	13	-	-	-	-	-	-	38	-
Pokersnik ²⁸	2012	Good	49	65	-	59	65	3.8	55	33	-
Rastan ²⁹	2010	Good	517	63.5	42	74	39	3.3	63	25	17
Rousse ³⁰	2015	Good	41	47	-	12	90	-	37	41	-
Slottosch ³¹	2012	Good	77	60	44	94	100	3.3	62	30	-
Truby ³²	2015	Good	70		-	-	—	—	—	31	-
Unosawa ³³	2012	Fair	47	64.4	70	_	68	2.6	62	30	30
Wang ³⁴	2009	Good	62	51	_	31	_	2.5	65	55	52
Wu ³⁵	2010	Good	110	60.6	_	_	100	6.0	61	42	_
Yang ³⁶	2014	Fair	12	60.4	_	100	100	5.2	100	67	-
Zhang ³⁷	2006	Good	32	55.4	_	—	59	2.9	44	25	_
Zhao ³⁸	2015	Fair	24	59.3	37	88	96	4.8	67	33	_

Abbreviations: ECMO, extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump.

Cleveland Clinic Heart and Vascular Institute

Table 2

Biancari et al, J Cardiothorac Vasc Anesth. 2018

ECMO Outcomes in PCS

Outcomes	No. of Studies	No. of Patients	Proportion/Mean (95% CI)	I ²
Hospital survival, %	31	2,986	36.1 (31.5-40.8)	84%
Weaning from VA-ECMO, %	24	2,049	59.5 (54.6-64.3)	77%
Reoperation for bleeding, %	18	1,779	42.9 (34.2-51.5)	93%
RBC units transfused	11	1,241	17.7 (13.3-22.1)	99%
Major neurological event, %	16	1,736	11.3 (7.8-14.8)	79%
Limb ischemia, %	16	1,909	10.8 (8.0-13.5)	70%
Lower limb amputation, %	5	330	1.1 (0.0-2.3)	0%
Deep sternal wound infection/mediastinitis, %	4	490	14.7 (4.0-25.4)	92%
Renal replacement therapy, %	19	1,979	47.1 (38.9-55.2)	92%
Ventricular assist device, %	21	1,685	2.3 (1.3-3.4)	57%
Heart transplantation, %	21	1,685	1.9 (1.0-2.8)	50%
Intensive care unit stay, d	10	589	13.3 (10.2-16.4)	95%
In-hospital stay, d	9	1,154	22.5 (17.7-27.3)	95%

Abbreviations: RBC, red blood cell; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

Biancari et al, J Cardiothorac Vasc Anesth. 2018

ECMO Outcomes in PCS

Table 1. Studies In	cluded in Ana	lysis: Basei	line Character	istics							
Study	Number of Patients	Patient Type	Average Age (y)	Age Range (y)	Males (%)	Peripheral ECMO (n, %)	IABP (n, %)	Average Time on ECMO (h)	Survival to D/C (n, %)	Bridged to VAD (n, %)/Survival to D/C (n, %)	Bridged to HTP (n, %)/Survival to D/C (n, %)
Bakhtiary et al [1]	45	PCCS	60.1 ± 13.6	Adults	78	29 (64)	30 (67)	153.6	13 (28.9)	5 (11.1)/3 (60)	2 (4.4)/1 (50)
Belle et al [20]	51	Mixed	51 ± 15	≥18	75	51 (100)	5 (10)	-	14 (27.5)	-	-
Bermudez et al [9]	42	Mixed	53.5	28-80	83	37 (88)	37 (88)	67.1	-	22 (52.4)/-	-
Elsharkawy et al [2]	233	PCCS	57	Adults	67	156 (67)	22 (9.4)	-	84 (36.1)	-	-
Hei et al [19]	68	PCCS	49.2 ± 13.3	≥18	76	67 (99)	11 (16)	114.6	43 (63.2)	-	8 (11.8)/6 (75)
Hsu et al [3]	51	PCCS	63 ± 15.7	Adults	71	51 (100)	-	180	17 (33.3)	-	3 (5.9)/3 (100)
Kagawa et al [21]	77	CA	61.9	18-74	71	77 (100)	52 (68)	-	16 (20.8)	4 (5.2)/-	_
Kim et al [10]	27	AMI	63.7 ± 11	45-81	59	27 (100)	2 (7)	30.2	16 (59.3)	-	-
Loforte et al [17]	73	Mixed	$\textbf{60.3} \pm \textbf{11.6}$	23-84	75	73 (100)	73 (100)	261.6	33 (45.2)	3 (4.1)/2 (66.7)	0 (0)/N/A
Moraca et al [22]	26	Mixed	57	18-76	69	24 (92)	21 (80)	72	17 (65.4)	9 (34.6)/6 (66.7)	1 (3.8)/1 (100)
Pagani et al [11]	33	Mixed	47 ± 11	Adults	70	22 (67)	20 (61)	65	12 (36.4)	10 (30.3)/8 (80)	7 (21.2)/7 (100)
Rastan et al [4]	517	PCCS	$\textbf{63.5} \pm \textbf{11.2}$	18-84	72	141 (27)	383 (74)	78.7	128 (24.8)	15 (2.9)/3 (20)	5 (1)/2 (40)
Schmidt et al [27]	220	Mixed	49 ± 16	Adults	67	-	-	320.9	-	_	-
Slottosch et al [23]	77	Mixed	60 ± 13	25-83	77	-	72 (94)	79	-	-	-
Smith et al [24]	17	PCCS	$\textbf{66.6} \pm \textbf{13.6}$	37-83	76	11 (65)	14 (82)	86	7 (41.2)	-	-
Unosawa et al [25]	47	PCCS	$\textbf{64.4} \pm \textbf{12.5}$	22-83	74	32 (68)	39 (83)	63.5	14 (29.8)	-	-
Wang et al [5]	62	PCCS	51 ± 15	Adults	52	-	19 (31)	61	34 (54.8)	-	
Wu et al [6]	110	PCCS	60 ± 14	Adults	71		_	143.3	46 (41.8)	-	_
Wu et al [13]	60	Mixed	51.33	19-83	67	-	44 (73)	97.3	32 (53.3)	-	3 (5)/2 (66.7)
Zhang et al [7]	32	PCCS	$\textbf{55.4} \pm \textbf{11.9}$	30-75	56	17 (53)		64.8	8 (25.0)	-	1.77
1000 C	23	(1997) (1997)	1.0000000000000000000000000000000000000	1952	(254) DE		and a second		920 0		

ACS = acute coronary syndrome; AMI = acute myocardial infarction; CA = cardiac arrest; D/C = hospital discharge; ECMO = extracorporeal membrane oxygenation; HTP = heart transplant; IABP = intraaortic balloon pump; Mixed = mixed population; N/A = not applicable; PCCS = postcardiotomy cardiogenic shock; VAD = ventricular assist device.

Cheng et al, Ann Thorac Surg. 2014

Cleveland Clinic Heart and Vascular Institute

ECMO Complications

Complications	Number of Studies	Reported Rate Minimum, Maximum (%)	Cumulative Complication Rate	Cochran's Q	p Value Heterogeneity	I-Squared (%)	Pooled Estimate Rate (%)	95% Confidence Interval (%)
LEI	13	3.7, 37.5	112 of 677	29.2	0.004	58.9	16.9	12.5-22.6
LEF	5	5.4, 20.7	33 of 335	4.4	0.350	9.9	10.3	7.3-14.5
LEA	5	0, 8.1	7 of 192	2.4	0.658	0	4.7	2.3-9.3
Stroke	3	3.9, 9.7	36 of 630	2.1	0.346	5.9	5.9	4.2-8.3
Neurologic	9	5.9, 22.1	151 of 1,019	18.4	0.018	56.5	13.3	9.9–17.7
AKI	6	29.9, 86.7	197 of 380	64.9	<0.001	92.3	55.6	35.5-74.0
Requiring RRT	15	7.84, 86.7	758 of 1,452	138.0	<0.001	89.9	46.0	36.7-55.5
Bleeding	5	14.8, 63.6	120 of 260	22.0	<0.001	81.8	40.8	26.8-56.6
Re-Thx for bleed	6	16.1, 86.7	409 of 828	86.9	<0.001	94.2	41.9	24.3-61.8
Significant infection	10	13.7, 64.5	321 of 922	130.6	<0.001	93.1	30.4	19.5-44.0

Table 2. Rates of Complications of Venoarterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock and Cardiac Arrest

AKI = acute kidney injury; bleeding or tamponade;

LEA = lower extremity amputation; RRT = renal replacement therapy. LEF = lower extremity fasciotomy or compartment syndrome;

Cheng et al, Ann Thorac Surg. 2014

LEI = lower extremity ischemia;

Re-Thx = **rethoracotomy** for

Extracorporeal Membrane Oxygenation Support in Postcardiotomy Elderly Patients: The Mayo Clinic Experience

Pankaj Saxena, FRACS, PhD, James Neal, CCP, Lyle D. Joyce, MD, PhD, Kevin L. Greason, MD, Hartzell V. Schaff, MD, Pramod Guru, MD, William Y. Shi, MBBS, Harold Burkhart, MD, Zhuo Li, Willian O 2015 by The Society of Thoracia Surg 2015;99:2053-60) Roxann B. Pike, MD, Dawit T. Haile, MD, and Gregory J. Schears, MD

Division of Cardiovascular Surgery, Perfusion Services, and Departments of Anesthesiology and Critical Care Medicine and Biostatistics, Mayo Clinic, Rochester, Minnesota and University of Melbourne, Melbourne, Australia

Retrospective review from the Mayo Clinic of ECMO for PCCS in >70 y/o 45 patients VA-ECMO post op • 21 patients (46.6%) died on ECMO In hospital mortality was 76% Poor outcomes were associated with pre-op A-fib, chronic renal injury, high lactate levels, elevated inflammatory markers, and high transfusion volumes

SUMMARY: ECMO CLINICAL OUTCOMES

Morbidity and mortality rates h with newer technology

BrainBloodKidneyImage: Strain Stra

33% 22,24

Bleeding 21-50% ^{3,4,13}

Renal Failure 32-87% ^{2,25}

Brain Death 18%⁴

Mortality increases with duration of support (>2 days) and patient age (> 65)

Morbidity and mortality rates have not improved over time or

Limb

Heart/Lung

Death

Amputation 5-7%^{12,4}

Limb Ischemia 5-21%^{12,21}

Heart Recovery 7-29% 4,25

Require LVAD or Transplant 5-52%^{4,26} Mortality 47-79% ^{14,21,27}

REFERENCES

- 1. Abrams D. Journal of the American College of Cardiology, 2014;63(25_PA)2769-2778
- Bakhtiary F. The Journal of Thoracic and Cardiovascular Surgery, 2008;135:382-8
- Belle L. EuroIntervention, 2012;8:375-382 3.
- Bermudez C. The Annals of Thoracic Surgery, 2011;92:2125-31
- Beurtheret S. European Heart Journal, 2013;34:112-120 5.
- 6. Cardarelli M. ASAIO Journal, 2009;55:581-586
- Chen Y. The Lancet, 2008; DOI:10.1016/S0140-6736(08)60958-7
- Cheng R. The Annals of Thoracic Surgery, 2014;97:610-6 8.
- *9. Chung S. Circulation Journal, 2012;76:1385-1392*
- 10. Elsharkawy H. Journal of Cardiothoracic and Vascular Anesthesia, 2010;524(6):946-954
- 11. Hei F. Artificial Organs, 2011;36(6):572-578
- 12. Hsu P. European Journal of Cardiothoracic Surgery, 2010;37:328-333
- 13. Loforte A. Artificial Organs, 2012;36(3):E53-E61
- 14. Kagawa E. Resuscitation, 2010;81:968-97
- 15. Kim H. Resuscitation, 2012;83:971-975
- 16. Mateen H. Archives of Neurology, 2011;68(12):1543-1549
- 17. Moraca R. Journal of Cardiac Surgery, 2012;27:521-527
- 18. Pagani F. The Annals of Thoracic Surgery, 2000;70:1977-95
- 19. Rastan A. The Journal of Thoracic and Cardiovascular Surgery, 2010;139:302-311
- 20. Schmidt M. Clinical Infectious Disease, 2012;55(12):1633-1641
- 21. Slottosch I. Journal of Surgical Research, 2013;181:E47-E55
- 22. Smedira N. The Journal of Thoracic and Cardiovascular Surgery, 2001;122:92-102
- 23. Smith C. The Annals of Thoracic Surgery, 2001;71:1421-7
- 24. Thiagarajan R. The Annals of Thoracic Surgery, 2009;87:778-85
- 25. Unosawa S. Surgery Today, 2013;43:264-270
- 26. Wu M. Resuscitation, 2010;81:1111-1116
- 27. Wu M. Resuscitation, 2012;83:976-981
- 28. Zhang R. European Journal of Cardiothoracic Surgery, 2006;30:617-620

CentriMag[™] Acute Circulatory Support System 2ND GENERATION SYSTEM: EQUIPMENT

BLOOD PUMP

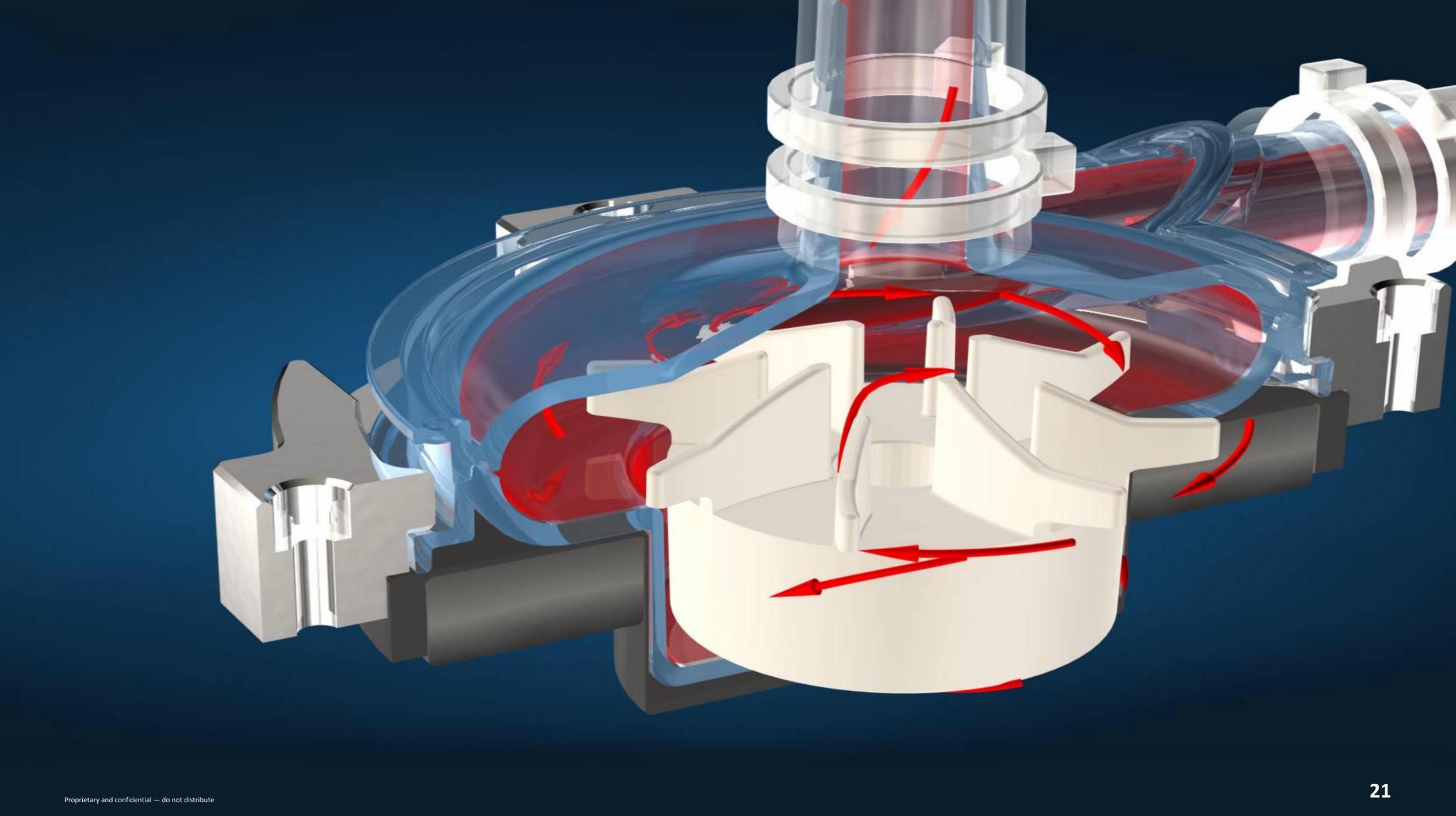
- 31 mL
- Disposable
- Centrifugal
- Fully Magnetically Levitated

MOTOR

• Each pump requires a separate motor

2nd Generation CentriMag[™] System Operating Manual (US) © 2013 Thoratec – Document No PL-0047, Rev 07 (May 2017)

CONSOLE

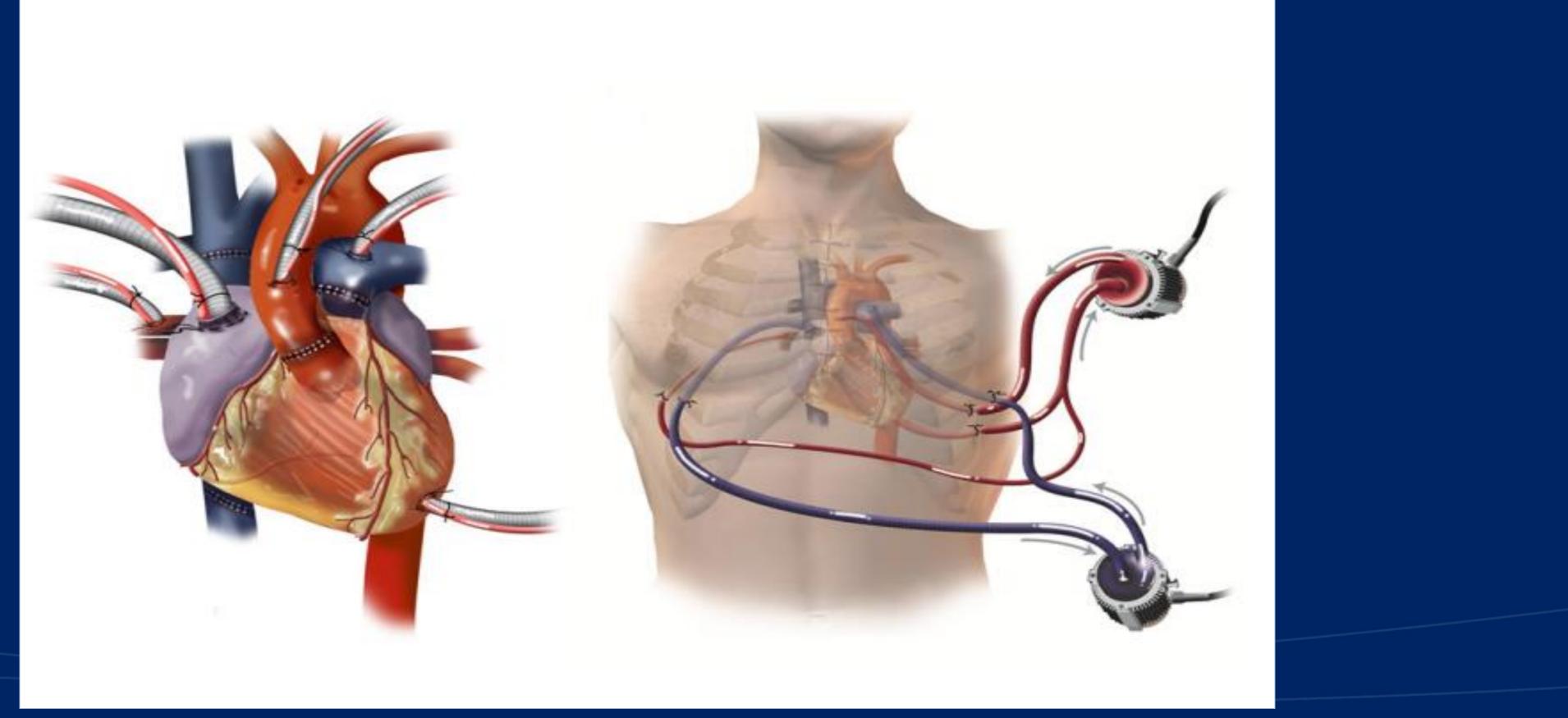

- Each Console supports one CentriMag[™] System
- Second console required for backup
- Interface to adjust pump, provides power to the motor and displays pump parameters

MONITOR

- **Optional** component
- CentriMag values can be viewed and adjusted in one location

CentriMag LVAD Characteristics

- Magnetically levitated centrifugal blood pump
- Low shear stress of blood components
- LVAD, RVAD or BiVAD
- Allows ECMO (oxygenator)
- Flows up to 10 L/min
- **Optimal LV decompression**
- Offers longer duration of support
- Bridge to recovery, transplant or long term device



CentriMag LVAD

CentriMag LVAD Disadvantages

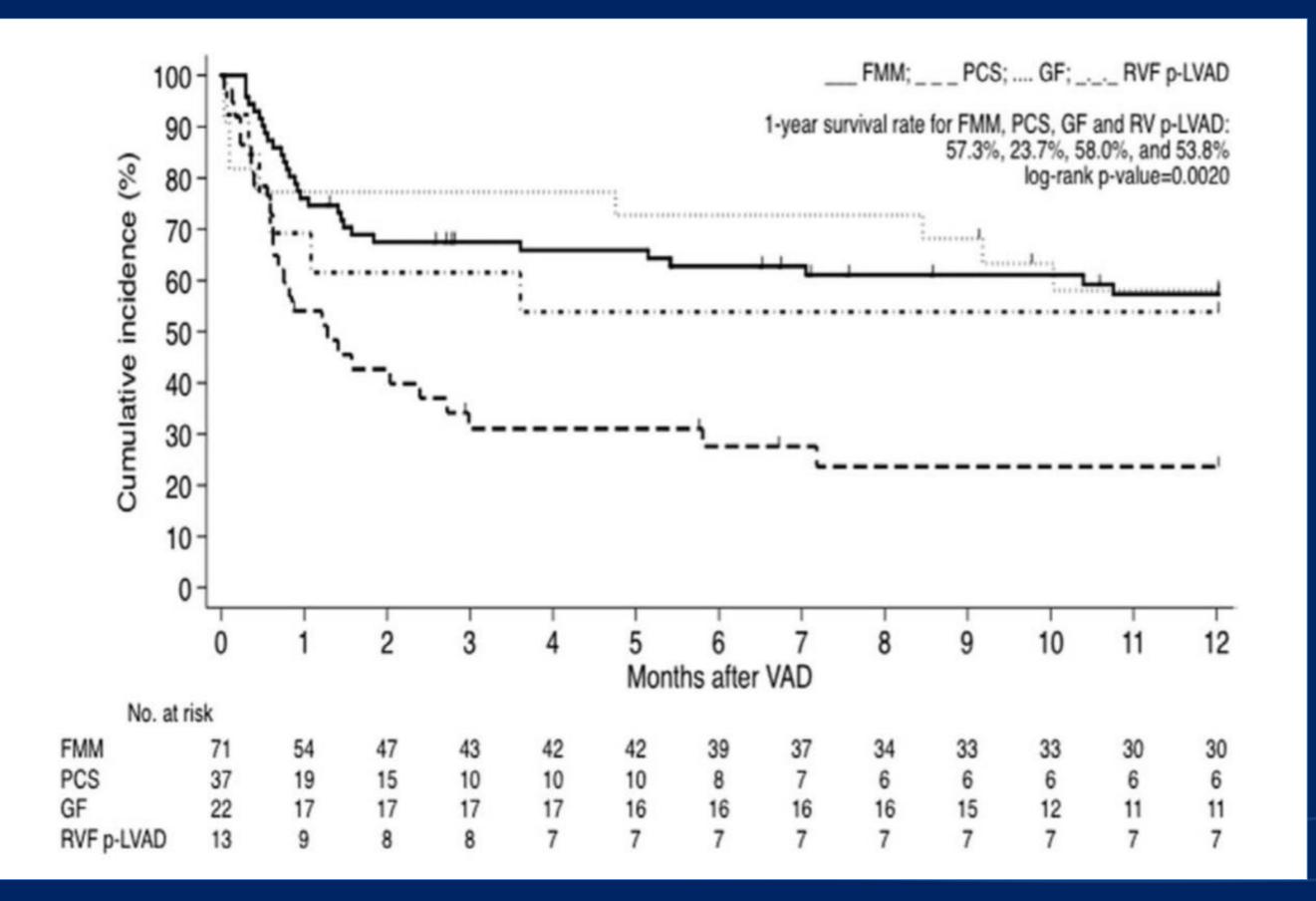
- Invasive surgical technique
- Higher incidence of bleeding
- No pulmonary support
- Thromboembolic complications
- Immobilization
- Higher initial cost than ECMO
- May select patients with no exit strategy

CentriMag LVAD Outcomes

Preoperative Patient Characteristics P/D1

	Overall	FMM	PCS	GF	RVF-p-iLVAD	P Value
n	143	71 (AMI 45.1%, DCM 31.0%, ICM 11.3%, other 12.7%)	37 (CABG 35.1%, valve 16.2%, CABG plus valve 27.0%, aorta 13.5%, other 8.1%)	22 (early 72.7%, late 27.3%)	13	
Age, y, mean±SD	52±16	49.9±17.6	58.5±12.5	49.5±15.8	53.8±14.8	0.048
Male sex, %	69.9	73.2	54.1	77.3	84.6	0.082
Whites, %	46.2	45.1	46.0	45.5	53.9	0.95
BMI, kg/m ² , mean±SD	27.4±6.3	26.7±6.8	29.5±6.2	26.3±5.1	26.3±4.4	0.11
CAD, %	54.6	52.1	75.7	36.3	38.5	0.011
Hypertension, %	51.1	45.1	75.7	40.9	30.8	0.005
Hyperlipidemia, %	46.9	40.9	54.1	59.1	38.5	0.32
Diabetes mellitus, %	32.2	33.8	35.1	22.7	30.8	0.77
INTERMACS 1, %	70.6	63.3	83.8	77.3	61.5	0.12
Intubated, %	62.9	70.4	62.2	50.0	46.2	0.18
CVVH, %	22.4	11.3	37.8	27.3	30.8	0.012
IABP, %	54.6	59.2	51.4	59.1	30.8	0.27
ECMO, %	19.6	22.5	21.6	13.6	7.7	0.54
No. of pressors, median (IQR)	2 (1-2)	1 (1–2)	2 (1–3)	2 (1–3)	2 (1-2)	0.057
No. of pressors and inotropes, median (IQR)	3 (2-4)	2 (1–3)	4 (2-4)	3 (2-4)	3 (2-3.5)	0.049

AMI indicates acute myocardial infarction; BMI, body mass index; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CVVH, continuous veno-venous hemofiltration; DCM, dilated cardiomyopathy; ECMO, extracorporeal membrane oxygenation; FMM, failure of medical management; GF, graft failure; IABP, intra-aortic baloon pump; ICM, ischemic cardiomyopathy; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; IQR, interquartile range; PCS, postcardiotomy shock; and RVF-p-iLVAD, right ventricular failure postimplantable left ventricular assist devices.



Takayama et al, Circ Heart Fail. 2014

CentriMag LVAD Outcomes

Takayama et al, Circ Heart Fail. 2014

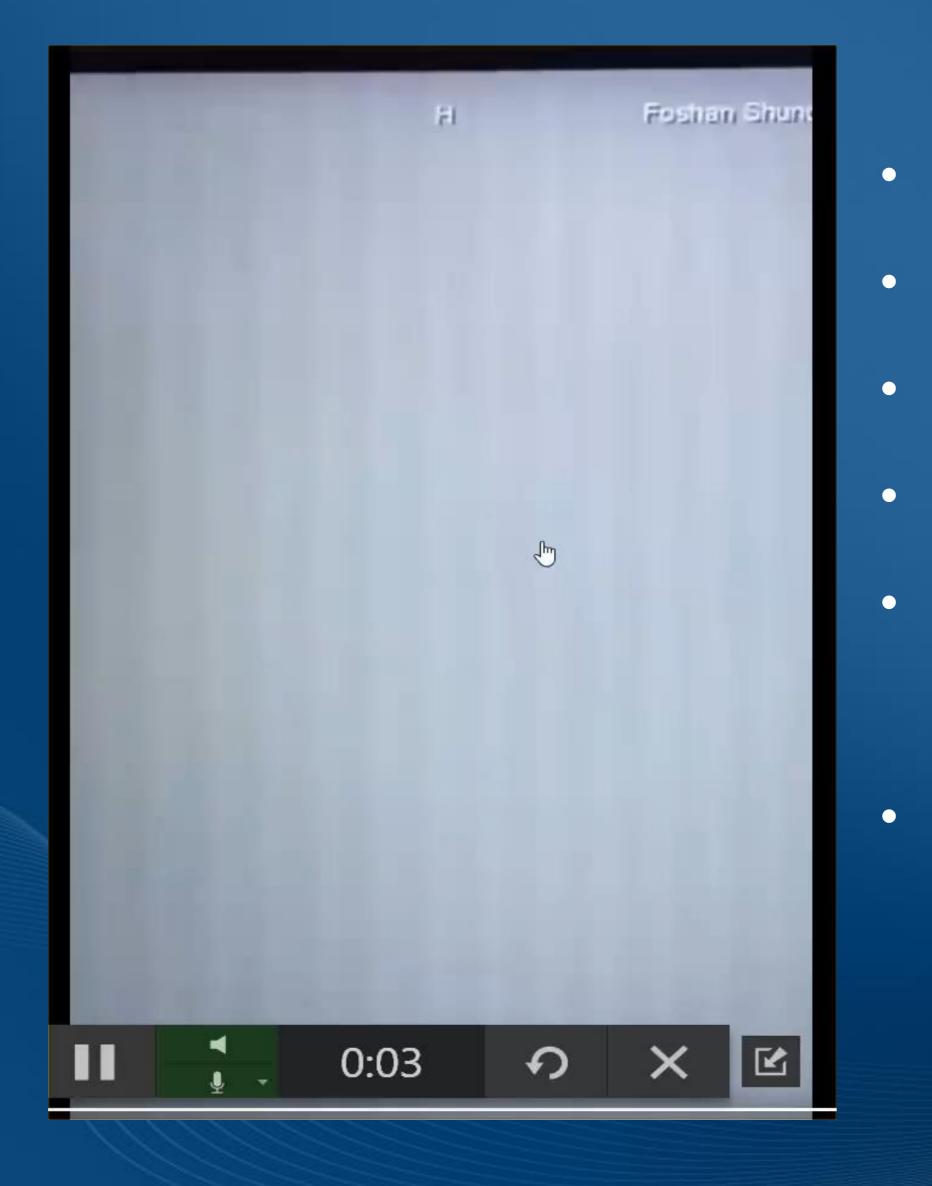
Cleveland Clinic Heart and Vascular Institute

CentriMag LVAD Outcomes

Complications

n	All device runs (158)	BiVAD (105)	LVAD (12)	RVAD (41)
Duration of support in days, mean (±SD), range, median (IQR)	20.5 (±20.6), <1– 145, 14.0 (8.0– 26.0)	21.1 (±20.8), 0–145, 14.0 (8.0–27.0)	18.8 (±17.1), 1–56, 15.5 (7.5–22.0)	19.5 (±21.4), 1–104, 12.0 (7.0–22.0)
Hemorrhagic, %				
Mediastinal re-exploration	20.9	21.9	16.7	19.5
GI bleeding	9.5	11.4	0	7.3
Major bleed	32.9	34.3	16.7	34.2
Neurological, %				
CVA	13.9	16.2	16.7	7.3
Infection, %				
UTI	24.8	25	25	24.4
Pneumonia	27.9	22.9	33.3	39
Mediastinitis	3.8	3.8	8.3	2.4
Bacteremia	16.5	13.3	8.3	2.8

BiVAD indicates biventricular assist device; CVA, cerebrovascular accident; GI, gastrointestinal; IQR, interquartile range; LVAD, left ventricular assist device; RVAD, right ventricular assist device; and UTI, urinary tract infection.



Takayama et al, Circ Heart Fail. 2014

RETROGRADE PERFUSION DURING ECMO

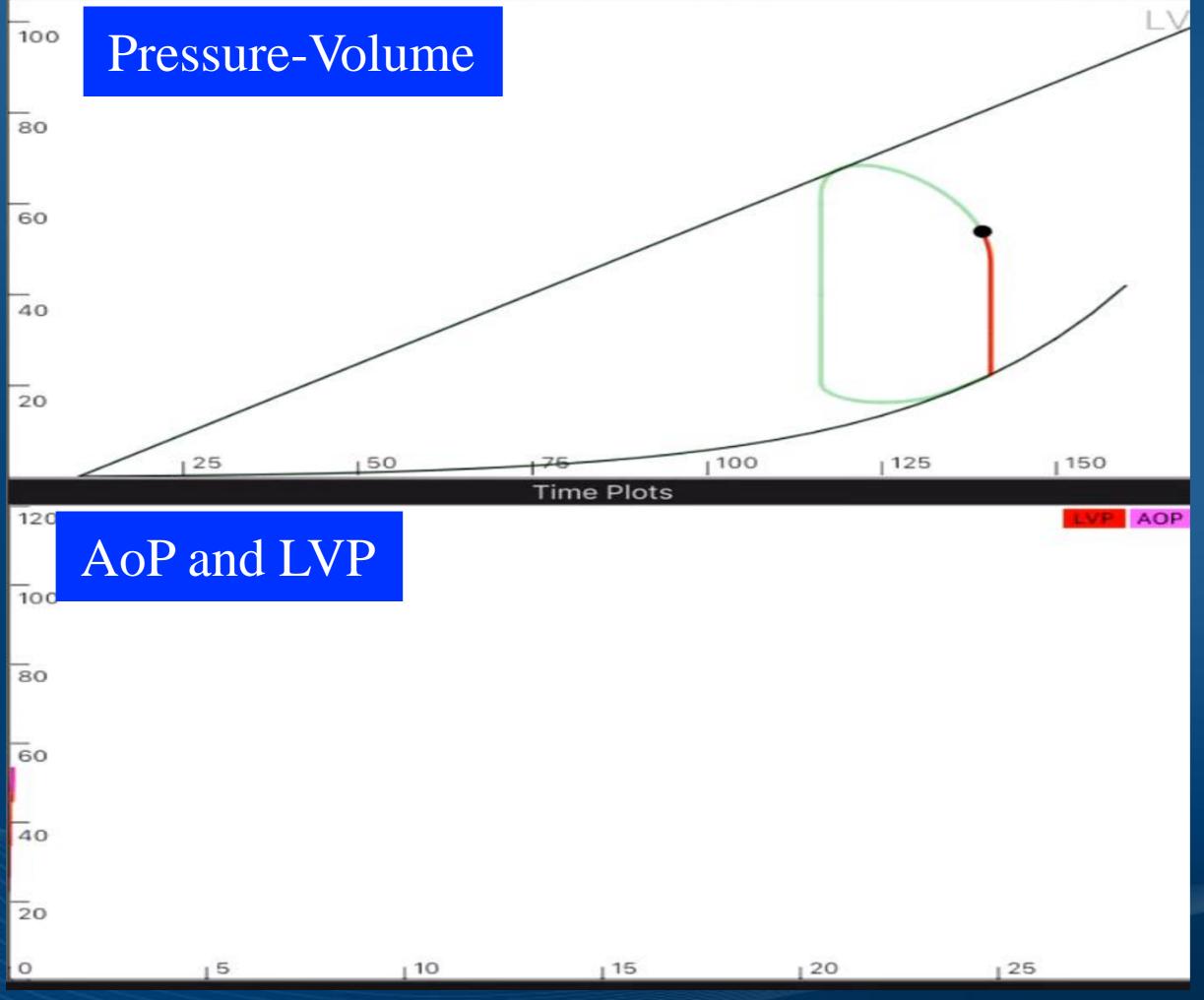
Note pigtail via axillary artery in ascending aorta Dye injected into ascending aorta is static Aortic valve opening very little Note flow coming up from below from ECMO Finally, note the dye entering the innominate artery supplying the brain If all the dye containing blood was deoxygenated, the heart and brain would be at risk

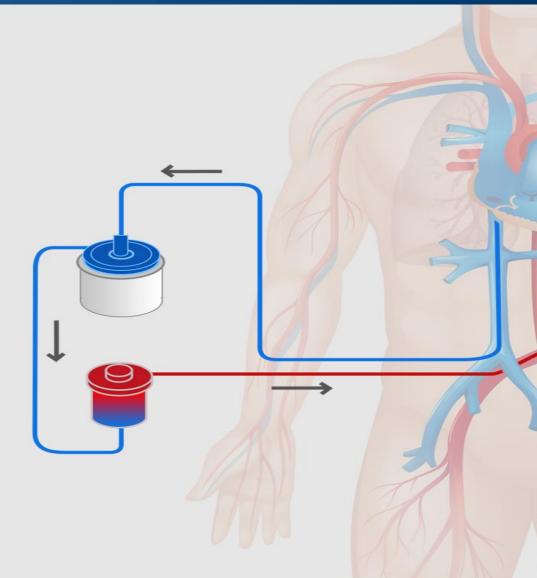
VA-ECMO with CP

Courtesy of Navin Kapur, MD

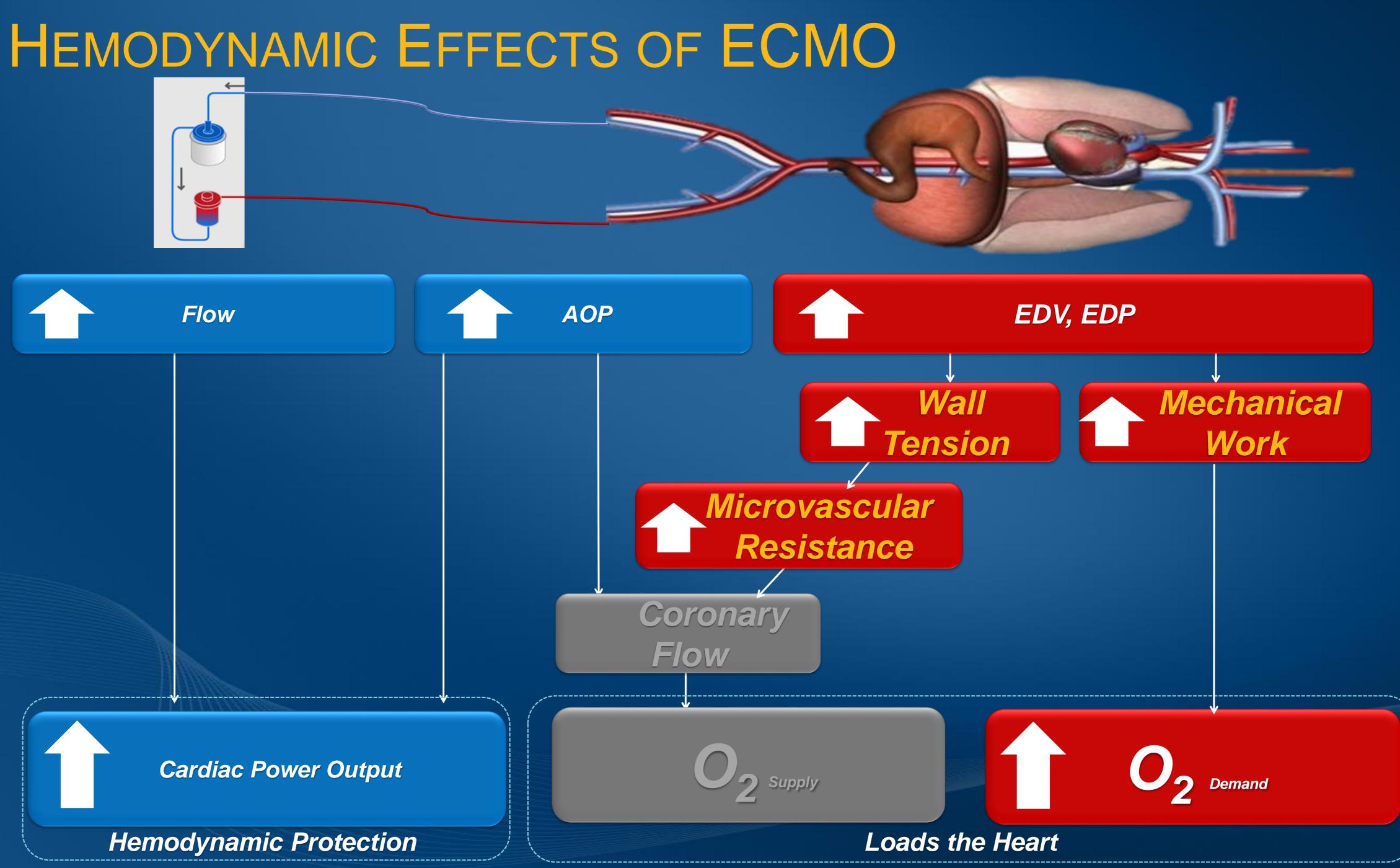
LV VENTING: MPELLA[®] + ECMO

VA-ECMO without CP

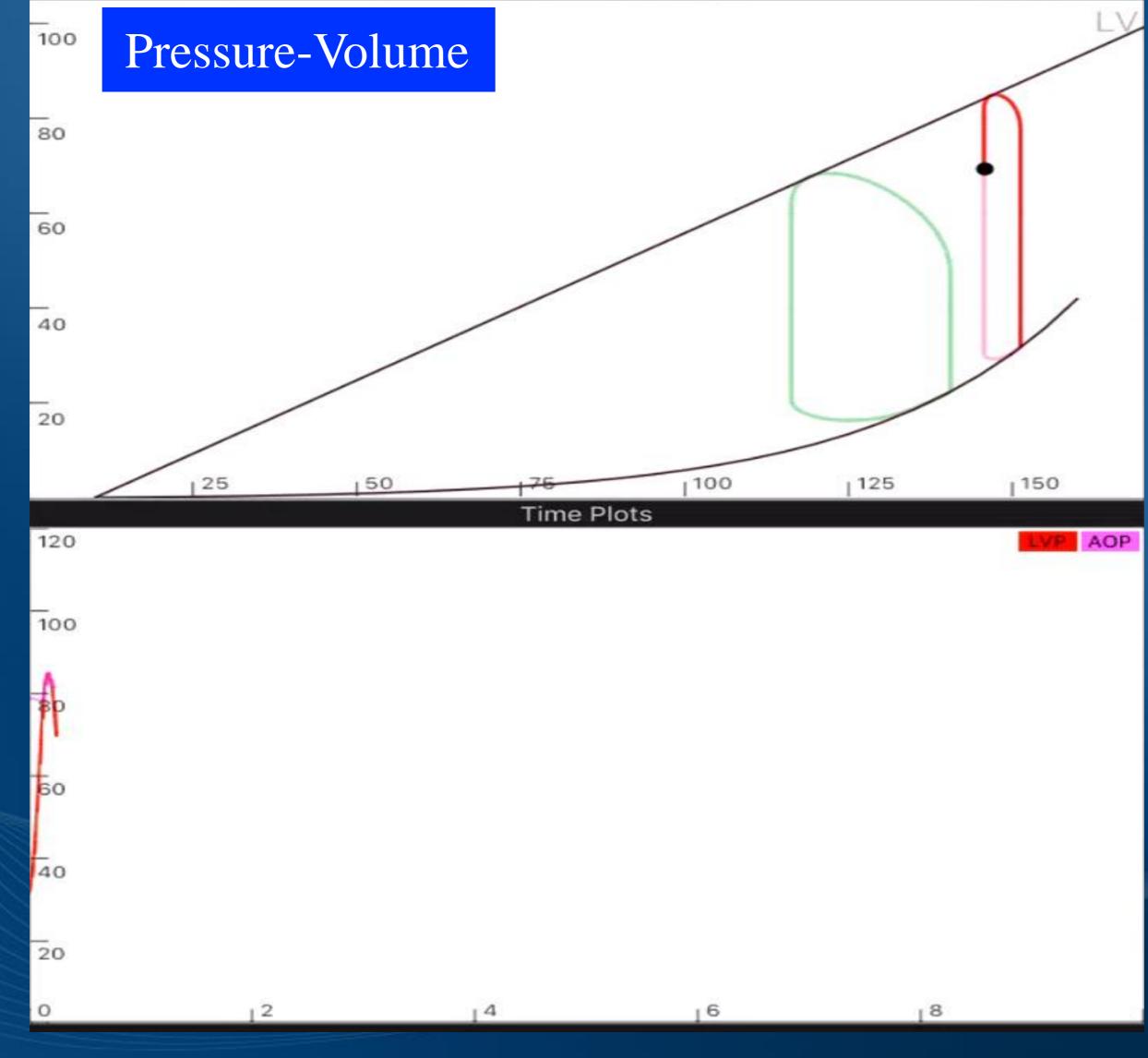


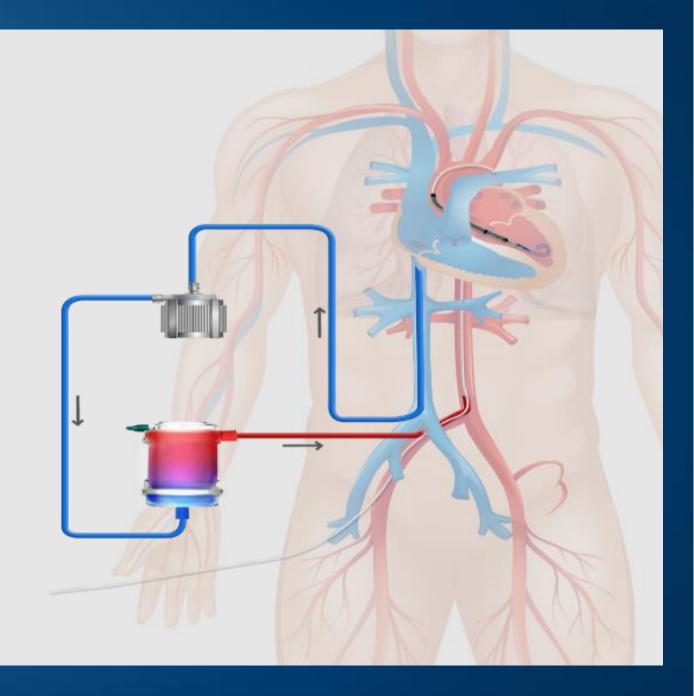

Energetics of ECMO – LV Loading

↑ Afterload **↑ Preload**


↑ AoP

VP

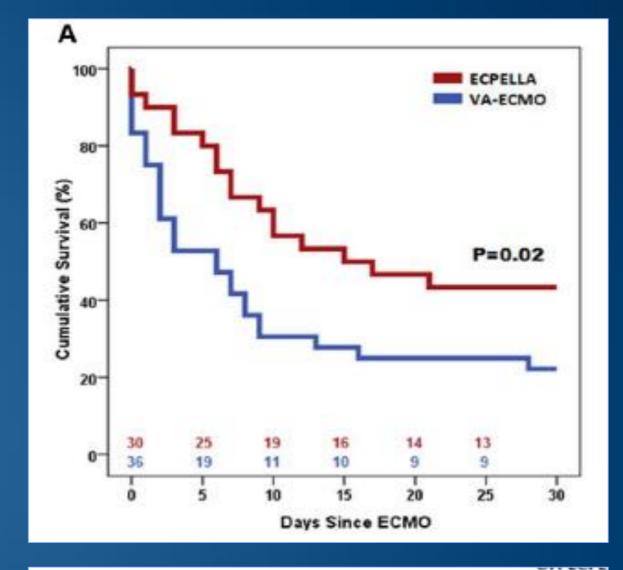




Simultaneous Impella[®] + ECMO Unloading

↑ Afterload ↑ Preload

AoP


33

ASAIO Journal 2018

Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock

SANDEEP M. PATEL,* JERRY LIPINSKI,† SADEER G. AL-KINDI,‡ TORAL PATEL,§ PETAR SARIC,§ JUN LI,‡ FAHD NADEEM,‡ THOMAS LADAS, § AMER ALAITI, ‡ ANN PHILLIPS, ‡ BENJAMIN MEDALION, ‡ SALIL DEO, ‡ YAKOV ELGUDIN, ‡ MARCO A. COSTA, ‡ MOHAMMED NAJEEB OSMAN, # GUILHERME F. ATTIZZANI, # GUILHERME H. OLIVEIRA, # BASAR SAREYYUPOGLU, # AND HIRAM G. BEZERRA#

- Retrospective review from UH Cleveland of 66 ECMO patients
- 30 ECMO+Impella[®] and 36 VA-ECMO
- Demonstrated benefits of ECMO+Impella vs VA-ECMO •
 - Survival 43% vs 22% (p=0.02)
 - Survival HR 0.52 (0.29-0.93); p=0.027 \bullet
 - Suggests a 50% mortality reduction with ECMO+Impella •
 - More ECMO+Impella patients wean than VA-ECMO (70% VS 44%; • p = 0.048)
 - Heart recovery 40% vs 22% Maximal inotropic score after day 1 was higher in VA-ECMO
 - No differences in major complication rates including hemolysis •

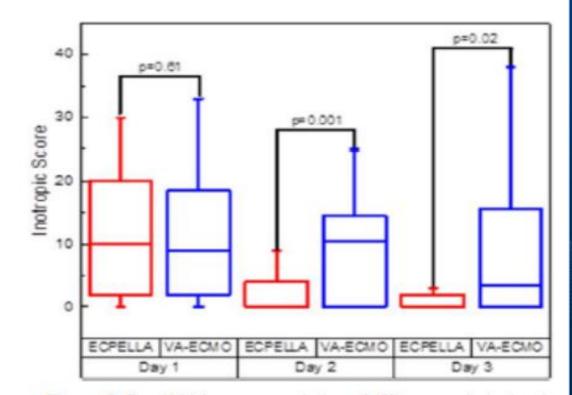


Figure 2. Box-Whisker representation of differences in inotropic score for the first 3 days. A box represents the interguartile range (25th-75th percentile). Center line denotes the median score. There is a statistically significant decrease in the inotropic score after day with the ECPELLA as compared with the VA-ECMO, VA-ECMO, venoarterial extracorporeal membrane oxygenation.

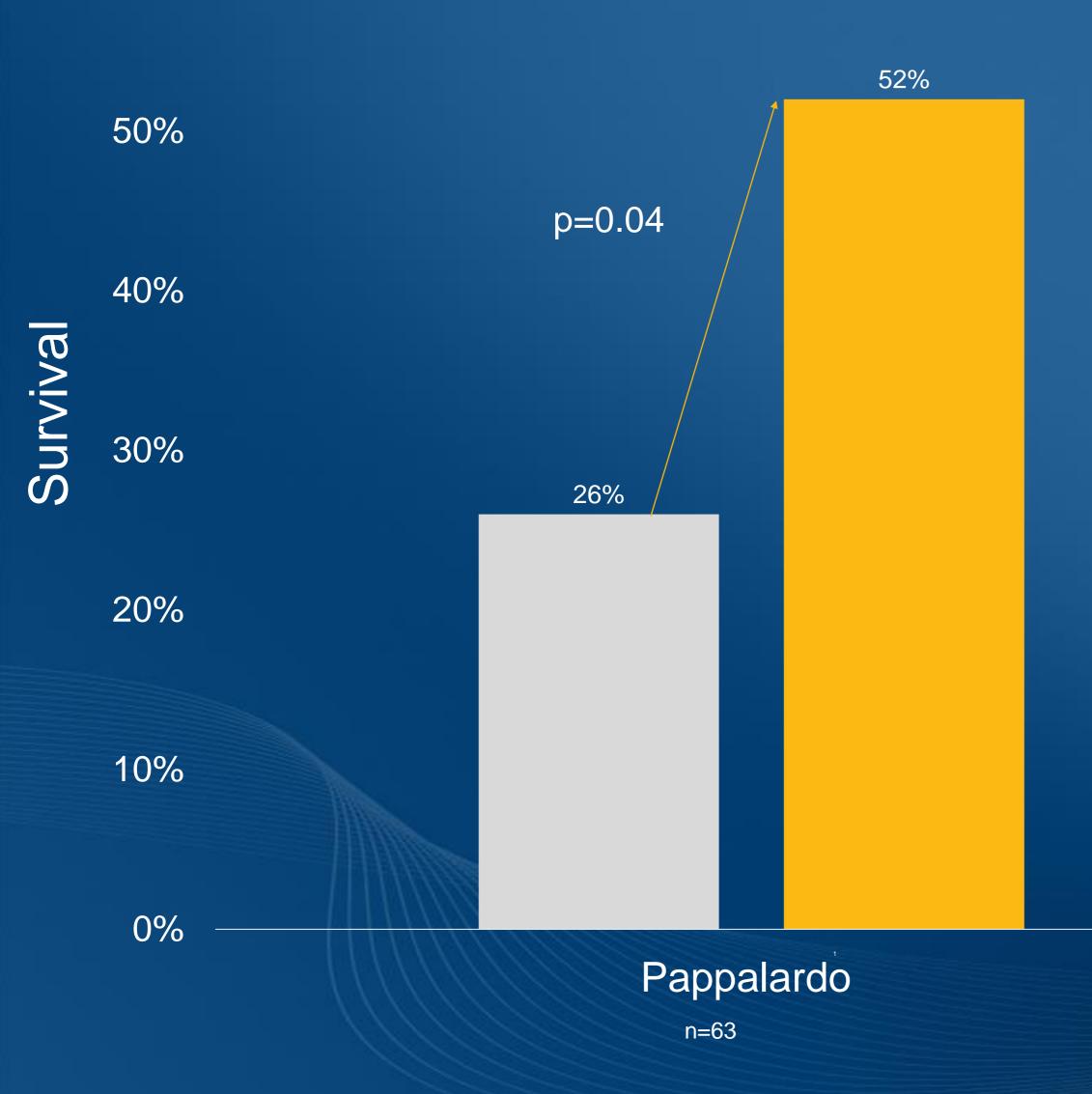
European Journal of Heart Failure (2016) doi:10.1002/ejhf.668

of veno-arterial extracorporeal membrane with cardiogenic shock

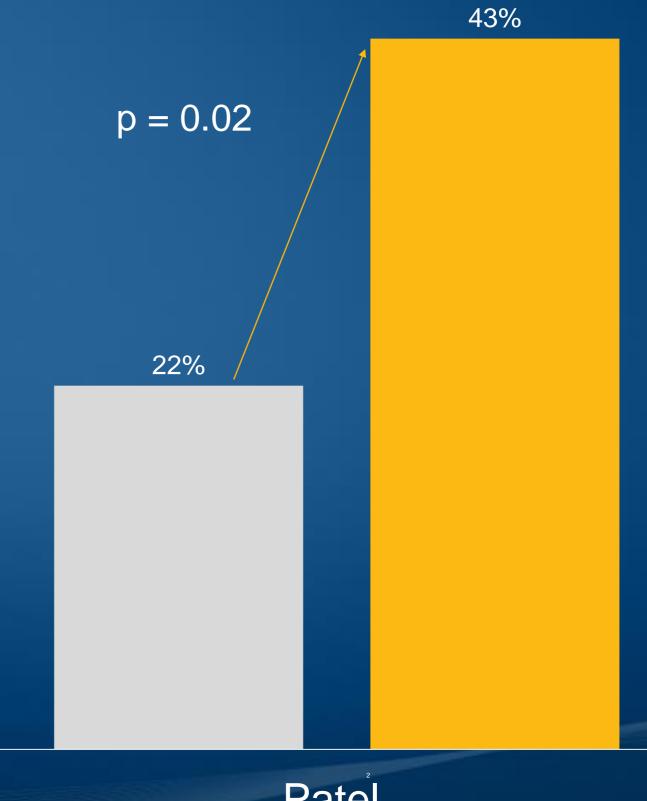
Federico Pappalardo^{1†*}, Christian Schulte^{2†}, Marina Pieri¹, Benedikt Schrage², Rachele Contri³, Gerold Soeffker⁴, Teresa Greco¹, Rosalba Lembo¹, Kai Müllerleile², Antonio Colombo³, Karsten Sydow², Michele De Bonis⁵, Florian Wagner⁶, Hermann Reichenspurner⁶, Stefan Blankenberg^{2,7}, Alberto Zangrillo¹, and Dirk Westermann^{2,7}*

Table 3 Comparison of major outcomes between patients treated with veno-arterial extracorporeal membrane oxygenation (ECMO) and Impella and patients treated with veno-arterial ECMO only in the propensity score matching sample (n = 63)

Parameter	Total (n = 63)	ECMO + Impella (n = 21)	ECMO (n = 42)	P-value
Hospital mortality, n (%)	41 (65)	10 (48)	31 (74)	0.04
Bridge to next therapy or recovery, n (%)	28 (44)	13 (62)	15 (36)	0.048
Weaning from MCS, n (%)	26 (41)	10 (48)	16 (28)	0.047
Bridge to recovery, n (%)	19 (30)	8 (38)	11 (26)	0.3
Bridge to VAD, n (%)	8 (13)	4 (19)	4 (9.5)	0.5
Bridge to cardiac transplantation, n (%)	0	0	0	
Duration of ECMO, h	120 (36-234)	148 (72-239)	73.5 (29–217)	0.2
Duration of MV, h	93 (29-228)	163 (90-228)	48 (17-265)	0.04
CVVH, n (%)	18 (29)	10 (48)	8 (19)	0.02
Haemolysis, n (%)	30 (48)	16 (76)	14 (33)	0.004
Major bleeding, n (%)	20 (32)	8 (38)	12 (29)	0.6
Minor bleeding, n (%)	14 (22)	4 (19)	10 (24)	0.8
LVEF at weaning, %	45.5 (30-55)	52.5 (47-55.5)	37.5 (25-50)	0.13


CVVH, continuous veno-venous haemofiltration; MCS, mechanical circulatory support; MV, mechanical ventilation; VAD, ventricular assist device.

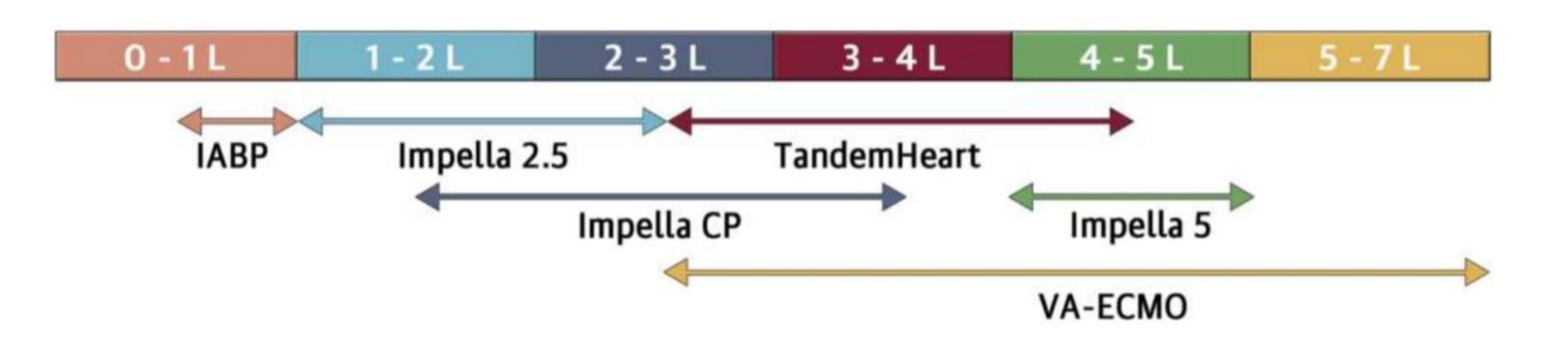
Concomitant implantation of Impella[®] on top oxygenation may improve survival of patients



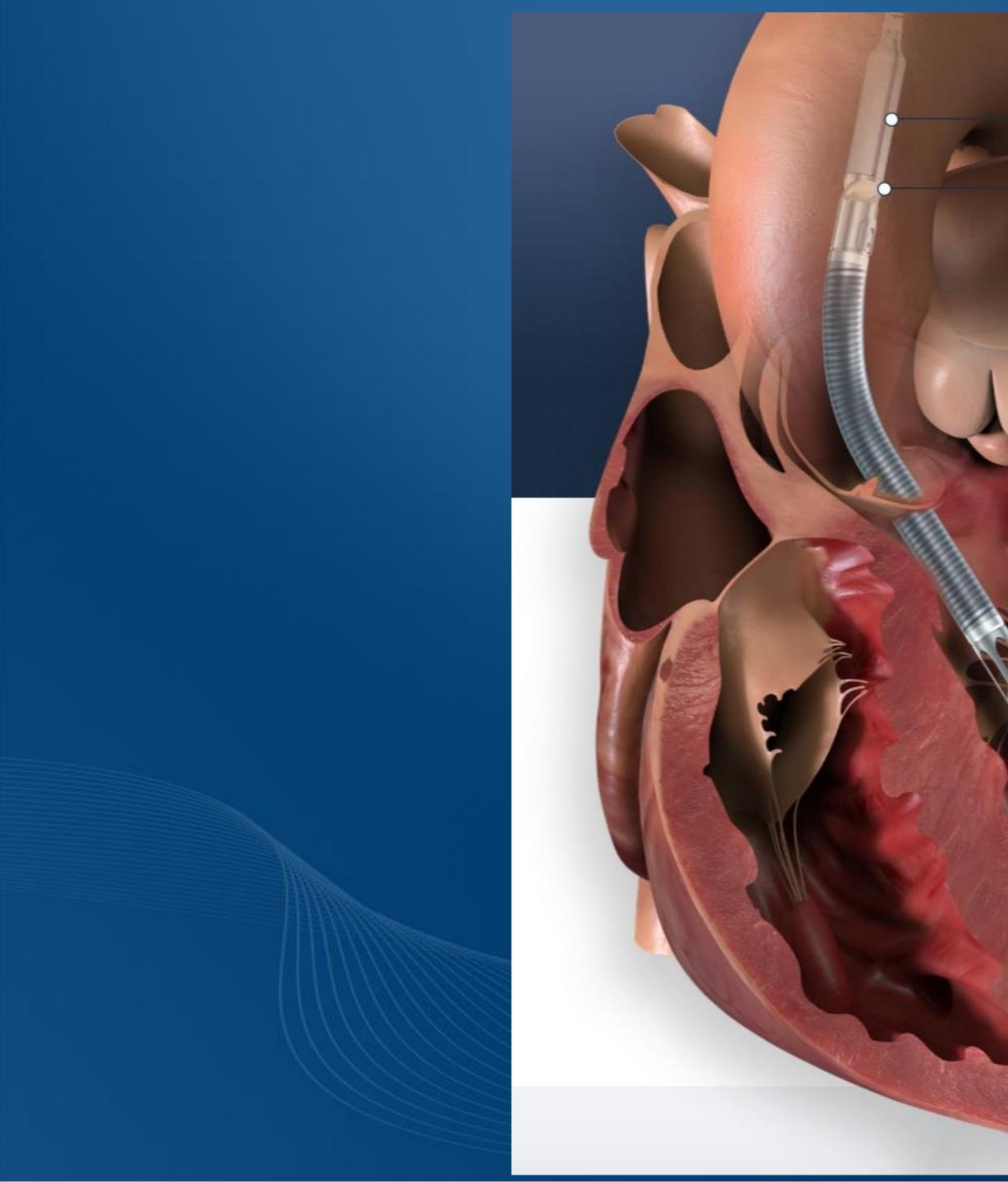
IMPROVED SURVIVAL WITH IMPELLA® + ECMO

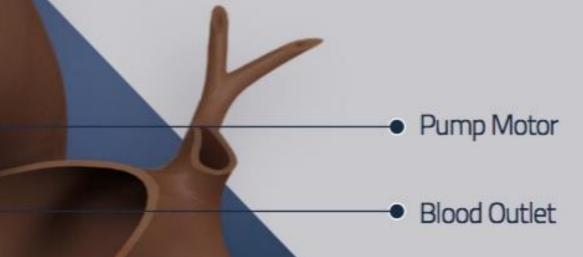
Pappalardo F, Schulte C, Pieri M, et.al. Concomitant implantation of Impella on top of veno-arterial extracorporeal Membrane oxygenation may improve survival of patients with cardiogenic shock. European Journal of Heart Failure (2017) 19, 404-412 Patel S, Lipinski J, Al-Kindi S et.al. Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock. ASAIO 2018

Patel


n=66

■ V-A ECMO ■ Impella + ECMO

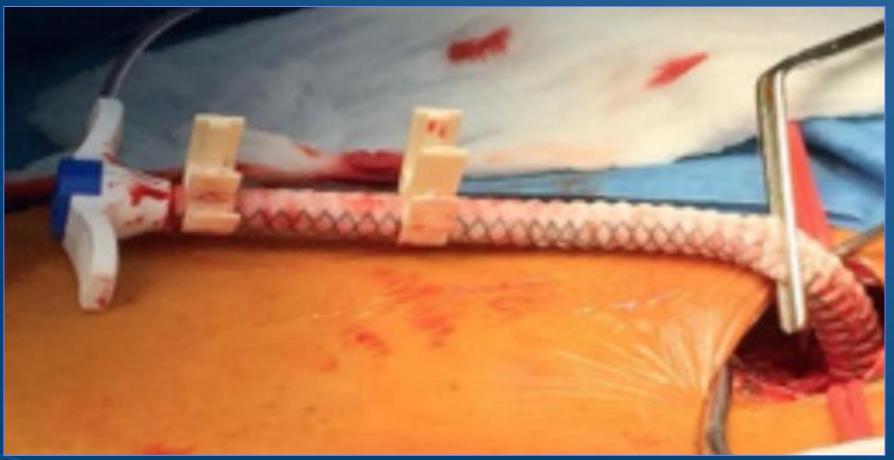




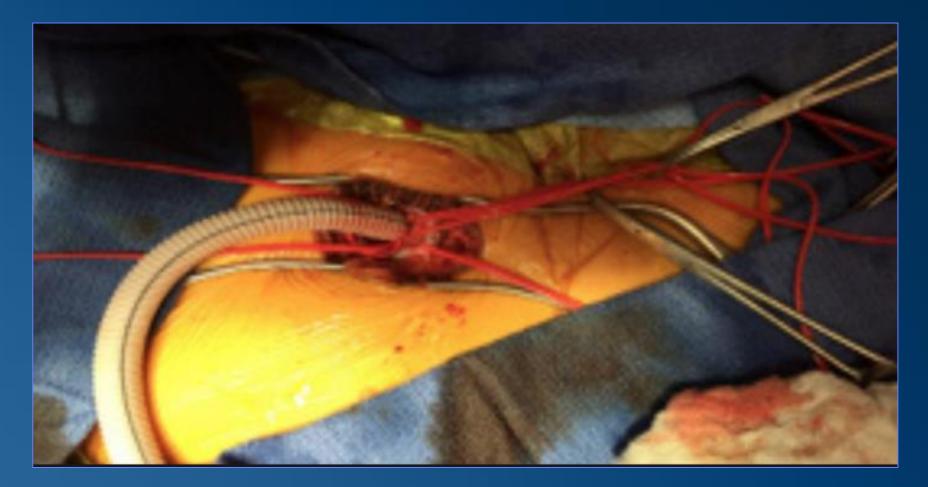
O'Neil W et al, J Am Coll Cardiol Intv. 2016;9(9):871-883

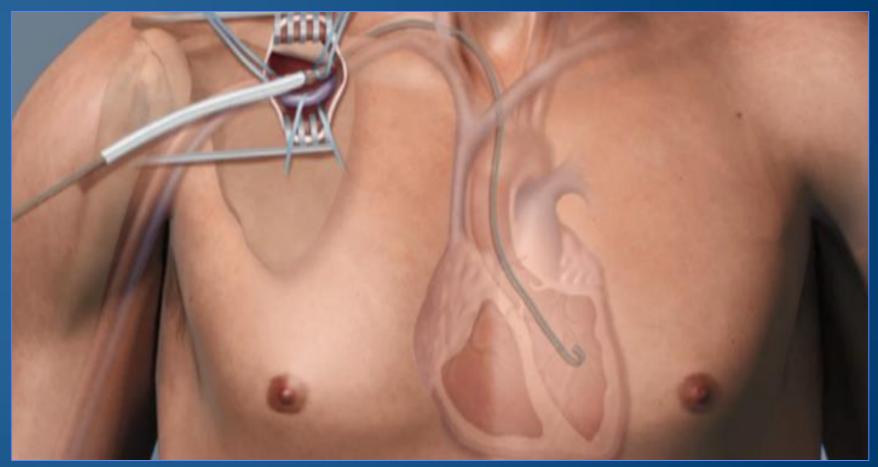
Anticipated Cardiac Output





Catheter Diameter: **9 Fr** Micro-axial pump **21 Fr** Flow Rate: **5 L/min**


e Bood Indeed



Impella 5.0 Outcomes

The RECOVER I: A multicenter prospective study of Impella 5.0/LD for postcardiotomy circulatory support

Bartley P. Griffith, MD,^a Mark B. Anderson, MD,^b Louis E. Samuels, MD,^c Walter E. Pae, Jr, MD,^d Yoshifumi Naka, MD, PhD,^e and O. Howard Frazier, MD^f

Objectives: Cardiogenic shock after cardiac surgery is accompanied by a high mortality rate. Early institution of hemodynamic support with a versatile, easy to insert left ventricular assist device might help bridge patients to recovery or to the next therapy, and improve the outcomes.

Methods: Patients developing cardiogenic shock or low cardiac output syndrome after being weaned off cardiopulmonary bypass were enrolled in a prospective single-arm feasibility study (RECOVER I). The primary safety endpoint was the frequency of major adverse events (death, stroke) at 30 days or discharge, whichever was longer. The primary efficacy endpoint was survival of the patient to implementation of the next therapy, which included recovery at 30 days after device removal and bridge-to-other-therapy.

75%, respectively.

Conclusions: The use of the Impella 5.0/left direct device is safe and feasible in patients presenting with postcardiotomy cardiogenic shock. The device was rapidly inserted, enabled early support, and yielded favorable outcomes. (J Thorac Cardiovasc Surg 2013;145:548-54)

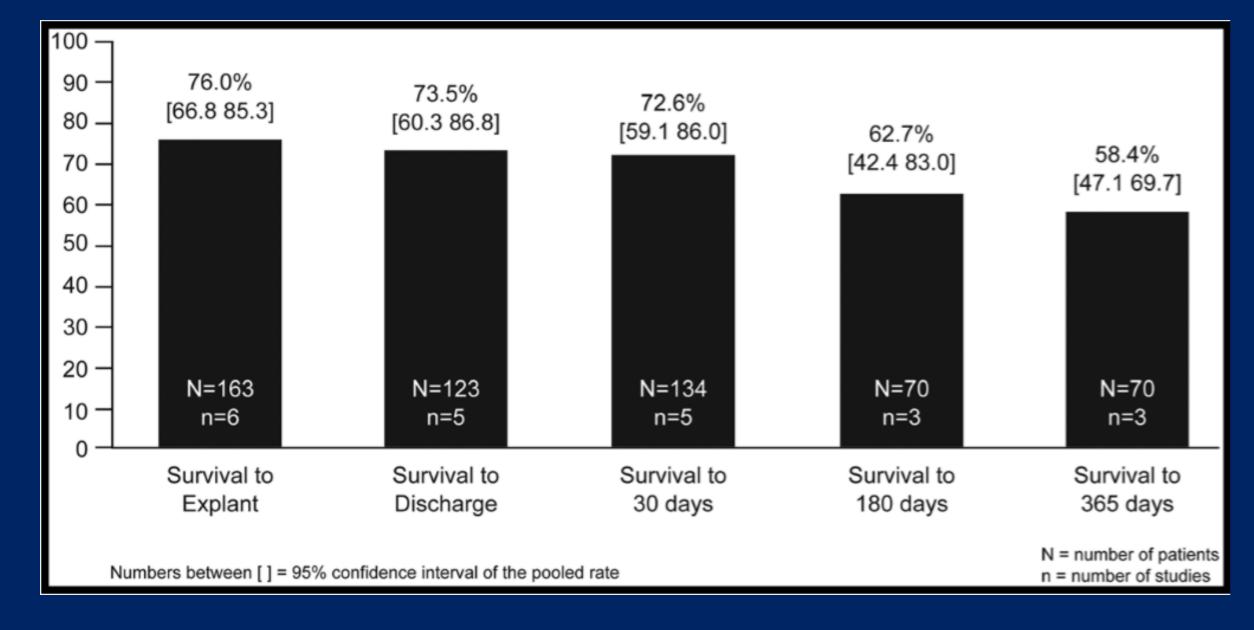
Cleveland Clinic Heart and Vascular Institute

Results: Sixteen patients provided informed consent and were enrolled in the study. Hemodynamics improved immediately after the initiation of mechanical support: cardiac index, 1.65 versus 2.7 L/min/m² (P = .0001); mean arterial pressure, 71.4 versus 83.1 mm Hg (P = .01); and pulmonary artery diastolic pressure, 28.0 versus 19.8 mm Hg (P < .0001). The pump provided an average of 4.0 ± 0.6 L/min of flow for an average duration of 3.7 \pm 2.9 days (range, 1.7–12.6). The primary safety endpoint occurred in 2 patients (13%; 1 stroke and 1 death). For the primary efficacy endpoint, recovery of the native heart function was obtained in 93% of the patients discharged, with bridge-to-other-therapy in 7%. Survival to 30 days, 3 months, and 1 year was 94%, 81%, and

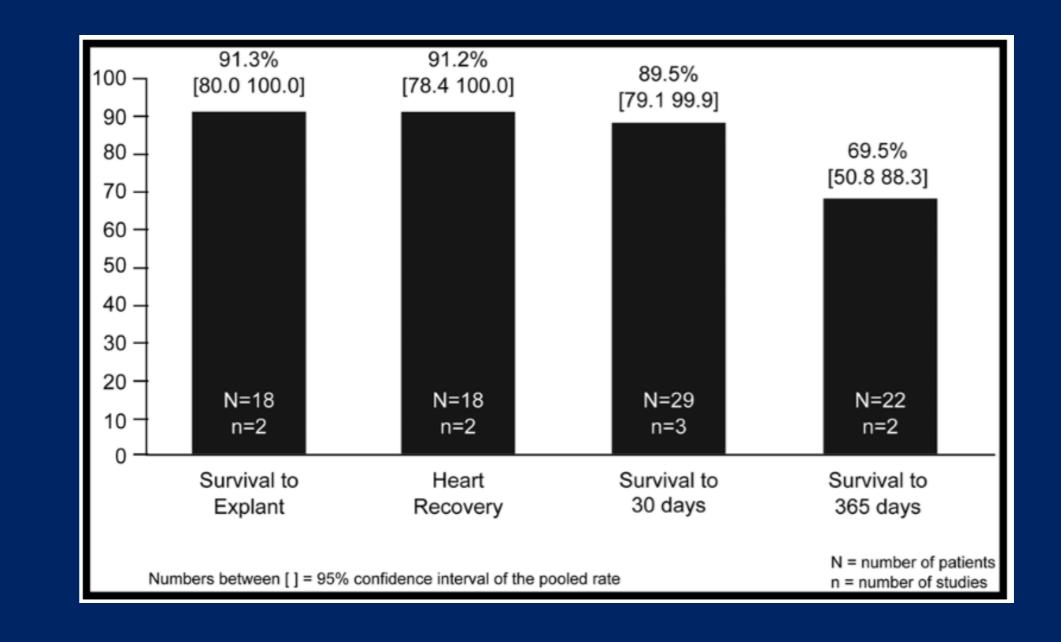
Impella 5.0 Outcomes

First Author (Year)	Year of Publication (Patient Enrolment)	No. Patients	Indications of Support (No. Patients)	Type of Impella	Access Site	Age, Mean ± SD or Median (IQR), y	Baseline LVEF, Mean ± SD or Median (IQR), %	Duration of Support, Mean ± SD or Median (IQR), d	Survival to Device Removal	Survival to Discharge	30-Day Survival
Higgins ¹⁶	2011 (2007–2009)	29	AMICS (3) PCCS (6) ADHF (12) Other (8)	Impella 5.0	29 femoral	NA	NA	NA	72.4%	72.4%	NA
Griffith ¹⁴ *	2013 (2006–2008)	16	PCCS (16)	Impella 5.0 Impella LD	11 femoral 5 ascending aorta	58.4 ± 9	23 ± 7	3.7 ± 2.9	94%	94%	94%
Gaudard ¹⁷	2015 (2008–2013)	40	AMICS (16) PCCS (7) ADHF (12) Other (4)		10 axillary 30 femoral	57 (48–63)	10 (7–10)	7 (5–10)	70.0%	NA	65.0%
Bansal ¹⁸	2016 (2011–2014)	24	ADHF (24)	Impella 5.0	24 axillary	51.29 ± 13.85	11.46 ± 3.12	Mean 17.58	70.8%	62.5%	66.7%
Lima ¹⁵	2016 (2009–2015)	40	ADHF (40)	Impella 5.0	30 axillary 10 femoral	55 ± 13	12 ± 5	7 ± 5	75.0%	67.5%	67.5%
Mastroianni ¹⁹	2017 (2010–2012)	14	AMICS (7) PCCS (6) Other (1)	Impella 5.0	14 axillary	64 ± 15	20.7 ± 5.3	8.5 ± 4.7	78.6%	64.3%	64.3%

*Griffith et al. study is an Impella 5.0/LD safety and efficacy study approved by the FDA (NCT00596726). ADHF, acute decompensated heart failure; AMICS, acute myocardial infarction complicated by cardiogenic shock; IQR, interquartile range; LVEF, left ventricular ejection fraction; NA, not applicable; PCCS, postcardiotomy cardiogenic shock.

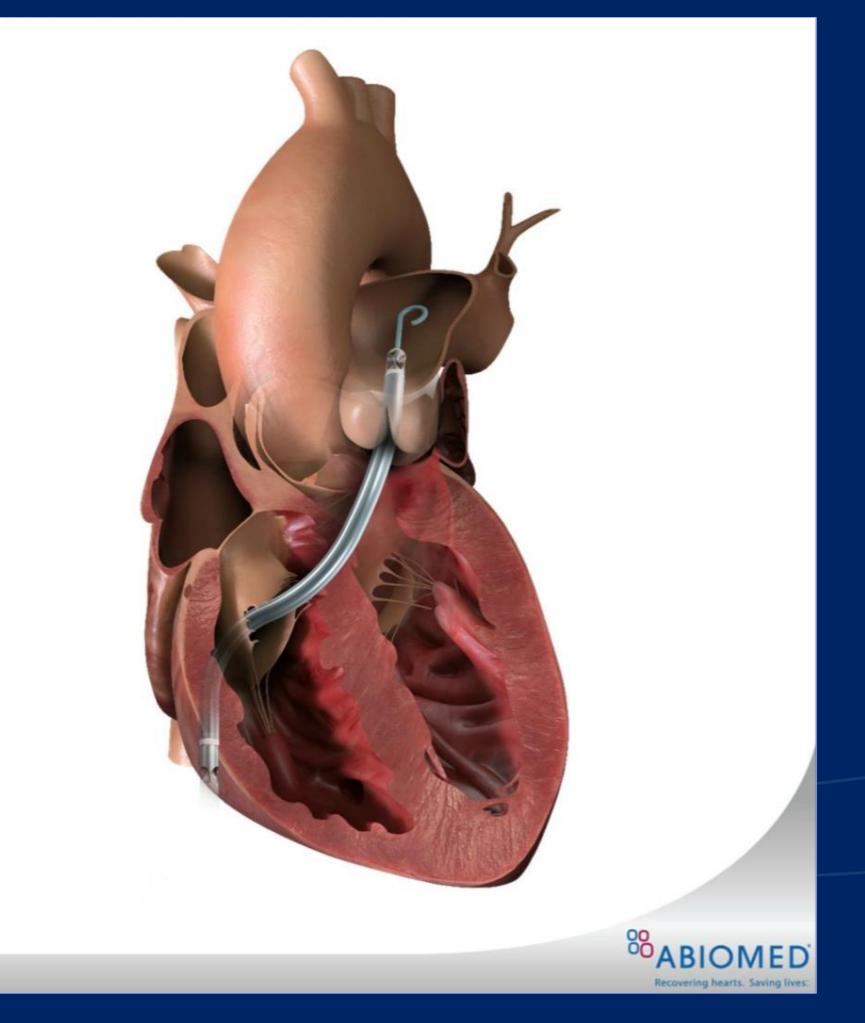


Batsides et al, Innovations 2018



Impella 5.0 Outcomes

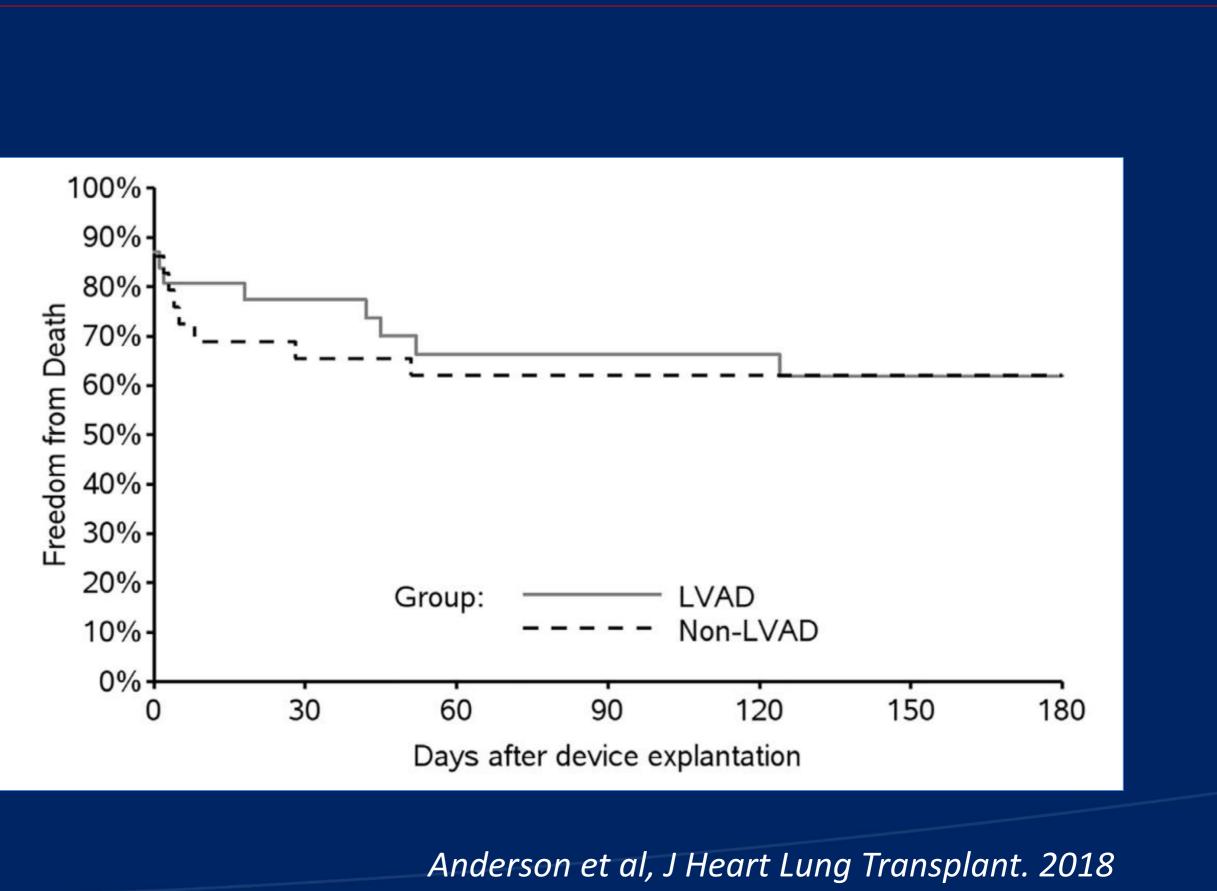
Batsides et al, Innovations 2018


Impella RP Outcomes

Outcomes of patients with right ventricular failure requiring short-term hemodynamic support with the **Impella RP device**

Mark Anderson, MD,^a D. Lynn Morris, MD,^b Daniel Tang, MD,^c George Batsides, MD,^d Ajay Kirtane, MD,^e Ivan Hanson, MD,^f Perwais Meraj, MD,^g Navin Kapur, MD,^h and William O'Neill, MDⁱ

From the ^aDivision of Cardiothoracic Surgery, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA; ^bDivision of Cardiology, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA; ^cDivision of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA; ^dDivision of Cardiothoracic Surgery, Rutgers / Robert Wood Johnson, New Brunswick, New Jersey, USA; ^eDivision of Cardiology, Columbia University / New York-Presbyterian Hospital and the Cardiovascular Research Foundation, New York, New York, USA; ^fDepartment of Cardiovascular Medicine, William Beaumont Hospital, Royal Oak, Michigan, USA; ⁸Division of Cardiology, Northwell Health, Manhasset, New York, USA; ^hDivision of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA; and the ⁱCenter for Structural Heart Disease, Henry Ford Hospital, Detroit, Michigan, USA.


Impella RP Outcomes

Outcomes of patients with right ventricular failure requiring short-term hemodynamic support with the **Impella RP device**

Mark Anderson, MD,^a D. Lynn Morris, MD,^b Daniel Tang, MD,^c George Batsides, MD,^d Ajay Kirtane, MD,^e Ivan Hanson, MD,^f Perwais Meraj, MD,^g Navin Kapur, MD,^h and William O'Neill, MDⁱ

From the ^aDivision of Cardiothoracic Surgery, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA; ^bDivision of Cardiology, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA; ^cDivision of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA; ^dDivision of Cardiothoracic Surgery, Rutgers / Robert Wood Johnson, New Brunswick, New Jersey, USA; ^eDivision of Cardiology, Columbia University / New York-Presbyterian Hospital and the Cardiovascular Research Foundation, New York, New York, USA; ^fDepartment of Cardiovascular Medicine, William Beaumont Hospital, Royal Oak, Michigan, USA; ⁸Division of Cardiology, Northwell Health, Manhasset, New York, USA; ^hDivision of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA; and the ⁱCenter for Structural Heart Disease, Henry Ford Hospital, Detroit, Michigan, USA.

Conclusions

- Post Cardiotomy shock continues to be a major clinical challenge and is associated with high mortality risk
- There are no randomized trials to help us to elaborate guidelines
- Inotropes and IABP are the first line of therapy but have limitations
- Mechanical circulatory support is necessary in patients with refractory post cardiotomy shock but is associated with high cost and complications
- ECMO is a preferred strategy at many centers but can be associated with significant complications and does not promote LV recovery

Conclusions

- CentriMag LVAD unloads the LV but requires implant and explant invasive techniques that can be associated with bleeding and trauma
- Impella 5.0 provides excellent hemodynamic support with direct unloading of the LV
- Impella 5.0 can be inserted with less surgical trauma, allows for early mobilization and may be associated with lower incidence of complications
- LV unloading with minimally invasive techniques may play a significant role in LV recovery and ultimately patient survival

