#### STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia The Society of Thoracic Surgeons

# **ECMO** as a Bridge to Heart Transplant in the Era of LVAD's.

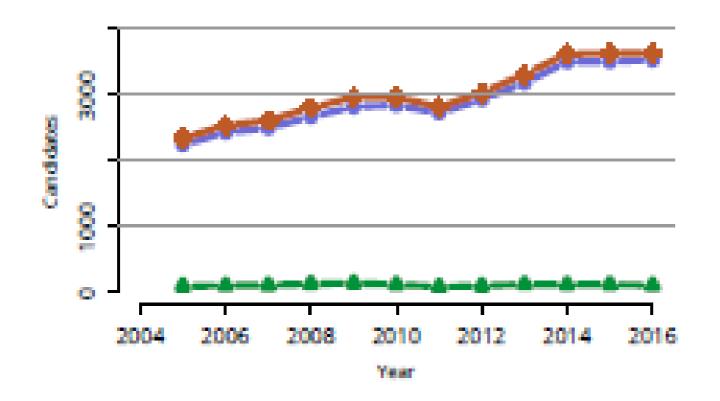
#### Christian Bermudez MD.

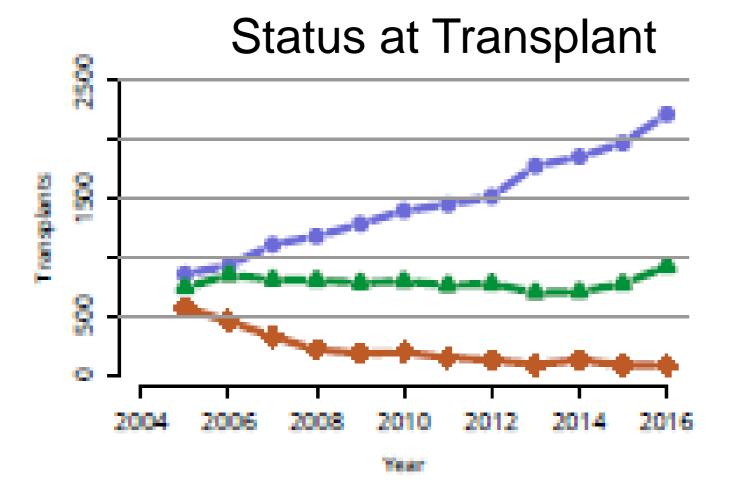
Associate Professor **Director Thoracic Transplantation Division Cardiac Surgery Department of Surgery** University of Pennsylvania



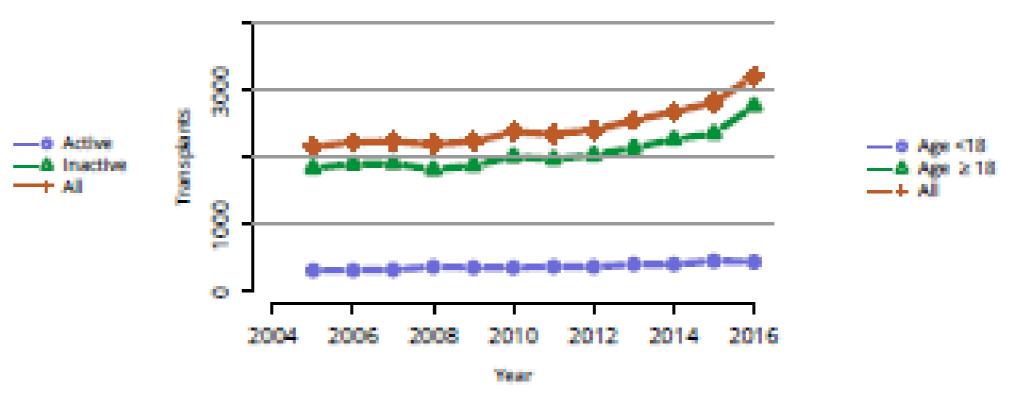


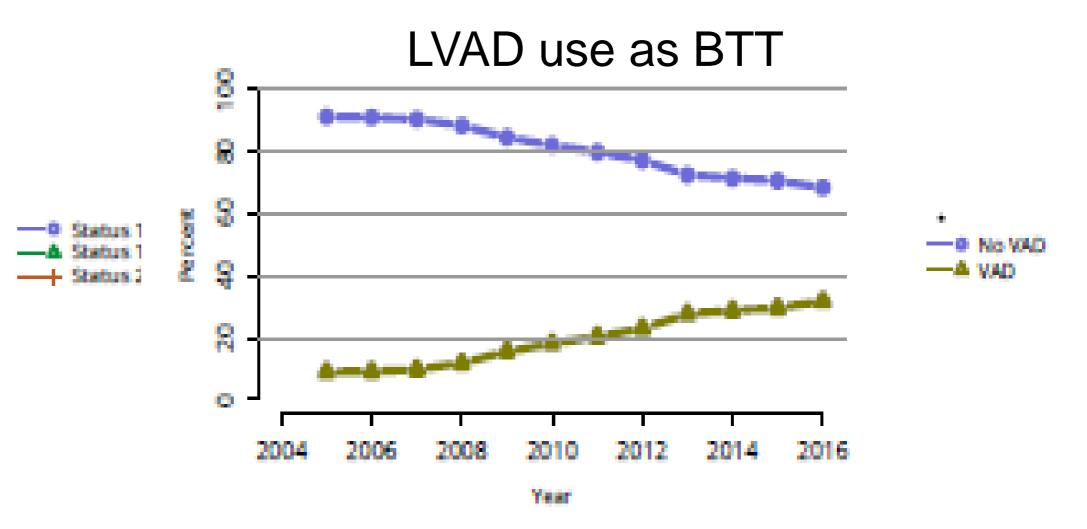
# **Conflict of Interest.**


- No financial disclosures.
- I will discussed the off-label use of ECMO systems.


# Objective

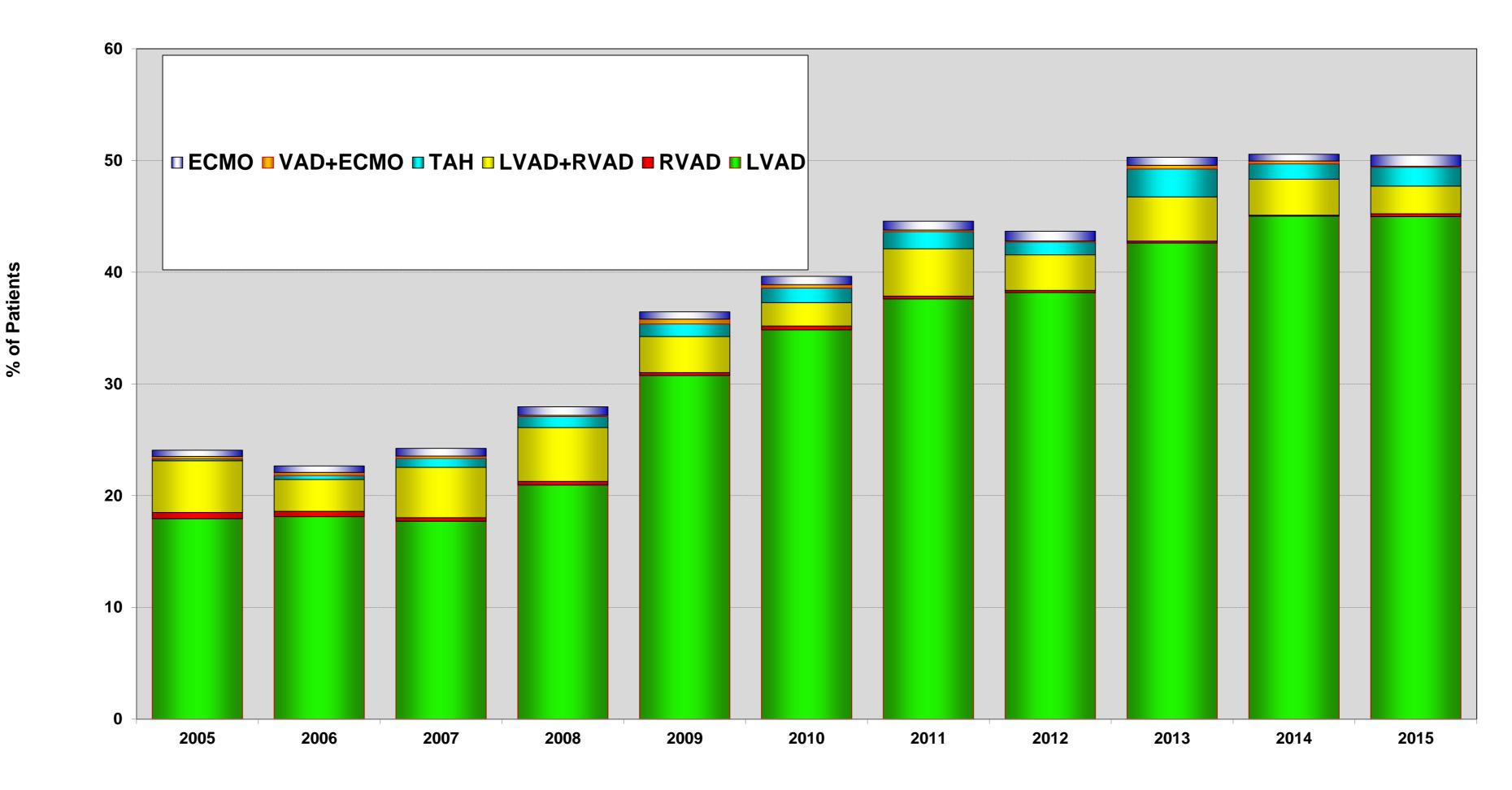
- To discuss recently implemented changes regarding the use of temporary MCS (ECMO) as a bridge to HTX in the US.
- To assess US and International experience with the use of ECMO previous to heart transplant.
- To discuss implications and patient selection


# Heart Transplants in the US


#### Candidates






Transplants

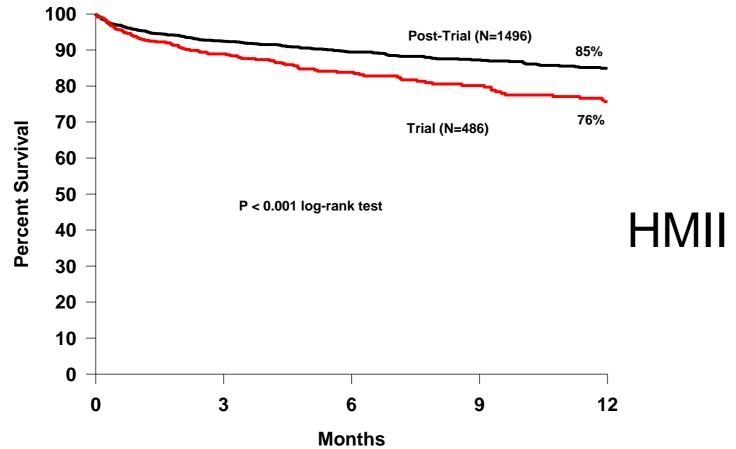




**OPTN/SRTR 2016 Annual Data Report: Heart** AJT 2018 18:S1, 1-503

### Adult Heart Transplants: Patients Bridged with Mechanical Circulatory Support by Year and Device Type




Year of Transplant



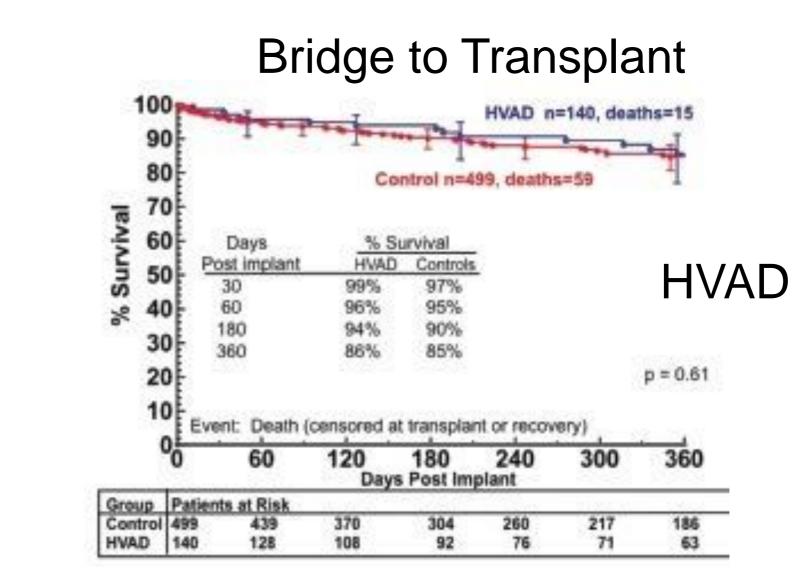
\* LVAD, RVAD, TAH, ECMO



Bridge to Transplant

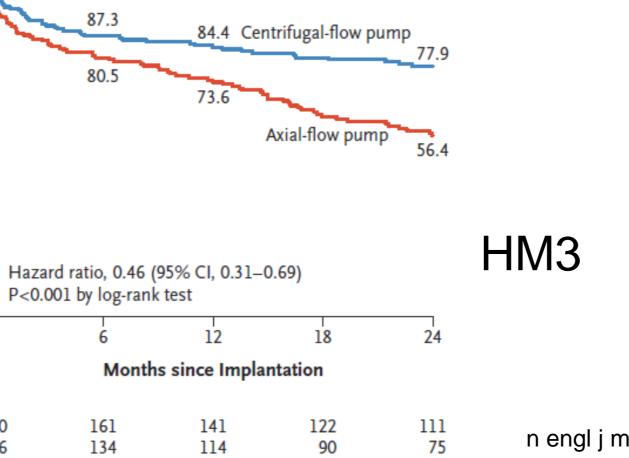


Ann Thorac Surg 2011;92:1406-13


Survival (%) 80 70with Event-free 60-50-40-30-Patients 20-

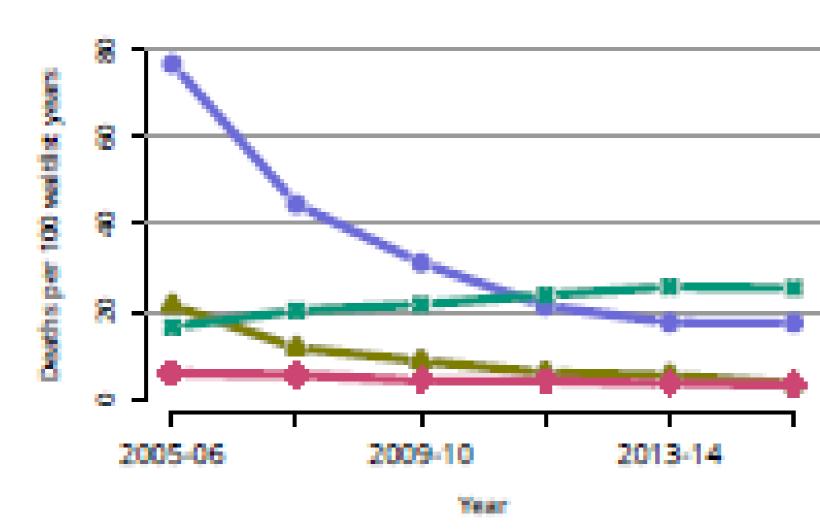
**V**T

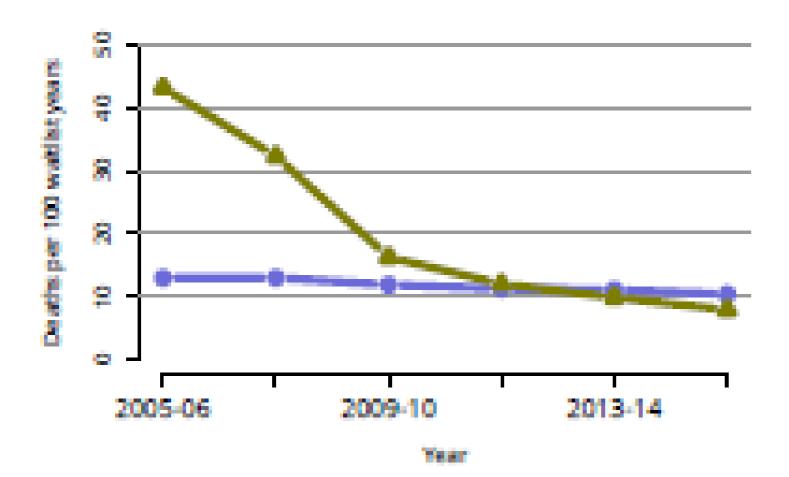
0


No. at Risk Centrifugal-flow pump 190 Axial-flow pump 176

### **Contemporary LVAD and Outcomes**




Circulation 2012;125:3191-3200


#### Bridge to Transplant and DT



n engl j med 378;15 nejm.org April 12, 2018

## **OPTN/SRTR 2016 Annual Data Report: Heart**







Pretransplant mortality declined ulletprecipitously among status 1A and 1B candidates

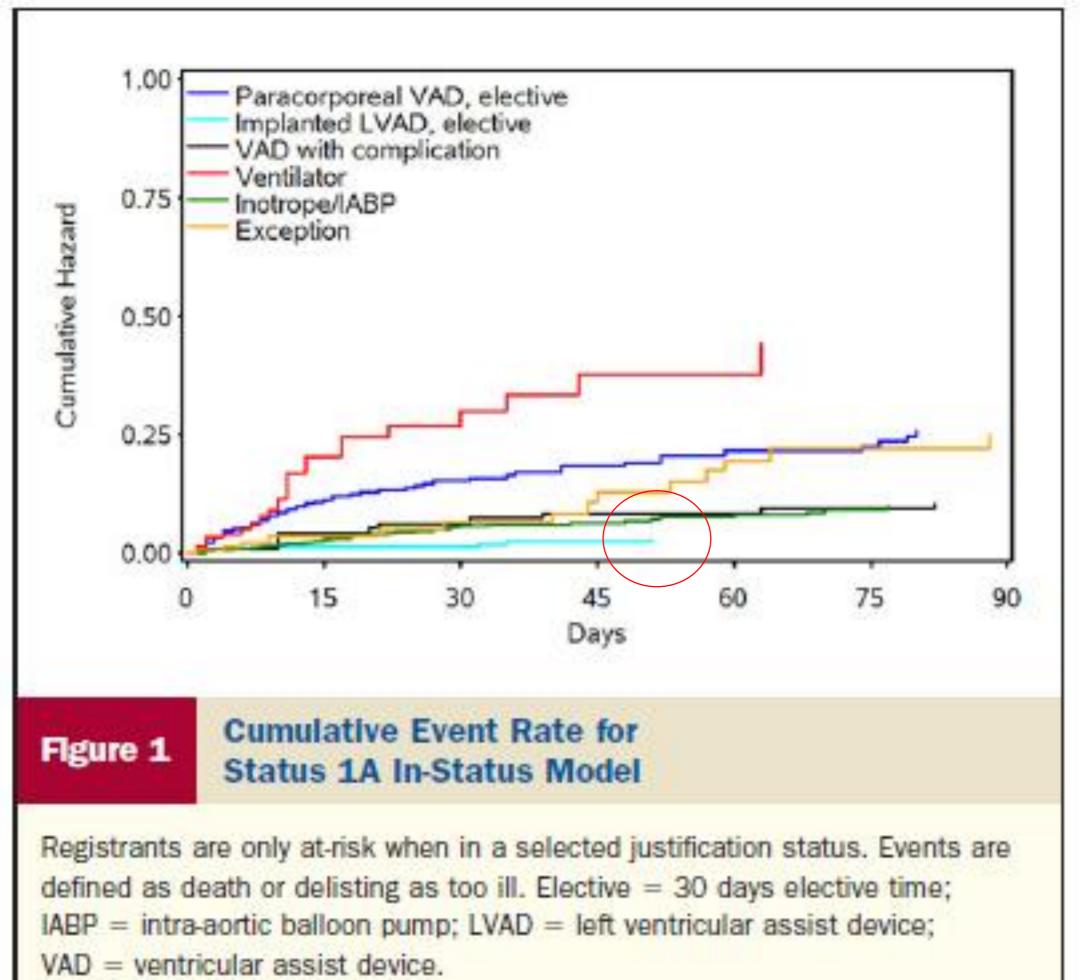
- No VAD —A VAD at listing
- Pretransplant mortality declined notably for candidates with VADs at listing, from 43.2 to 8.0 deaths per 100 waitlist years, lower than the pretransplant mortality among candidates without VADs

### **Listing for Heart Transplant: Status System**

Status 1A: The sickest patient, time limited Mechanical Support ECMO, Balloon pump, mechanical ventilator High dose IV inotrope medication and Swan-Ganz catheter • VAD ventricular assist device (30 days of 1A time) • VAD > 30 days with complication (thrombus, infection, malfunction, life-threatening ventricular rhythms) UNOS Review Board petition for exception

Status 1B: Mid level patient, not time limited

- VAD, TAH patient at home
- Continuous IV inotrope
- UNOS Review Board petition for exception


Status 2: Stable but sick patient • Heart failure patient managed on oral medications

<u>Status 7</u>: Inactive patient, no time accrues during this phase

Temporarily unsuitable to receive transplant

#### **Transplant Registrants With Implanted LVAD Have Insufficient Risk to Justify Elective Organ Procurement and Transplantation Network Status 1A Time**

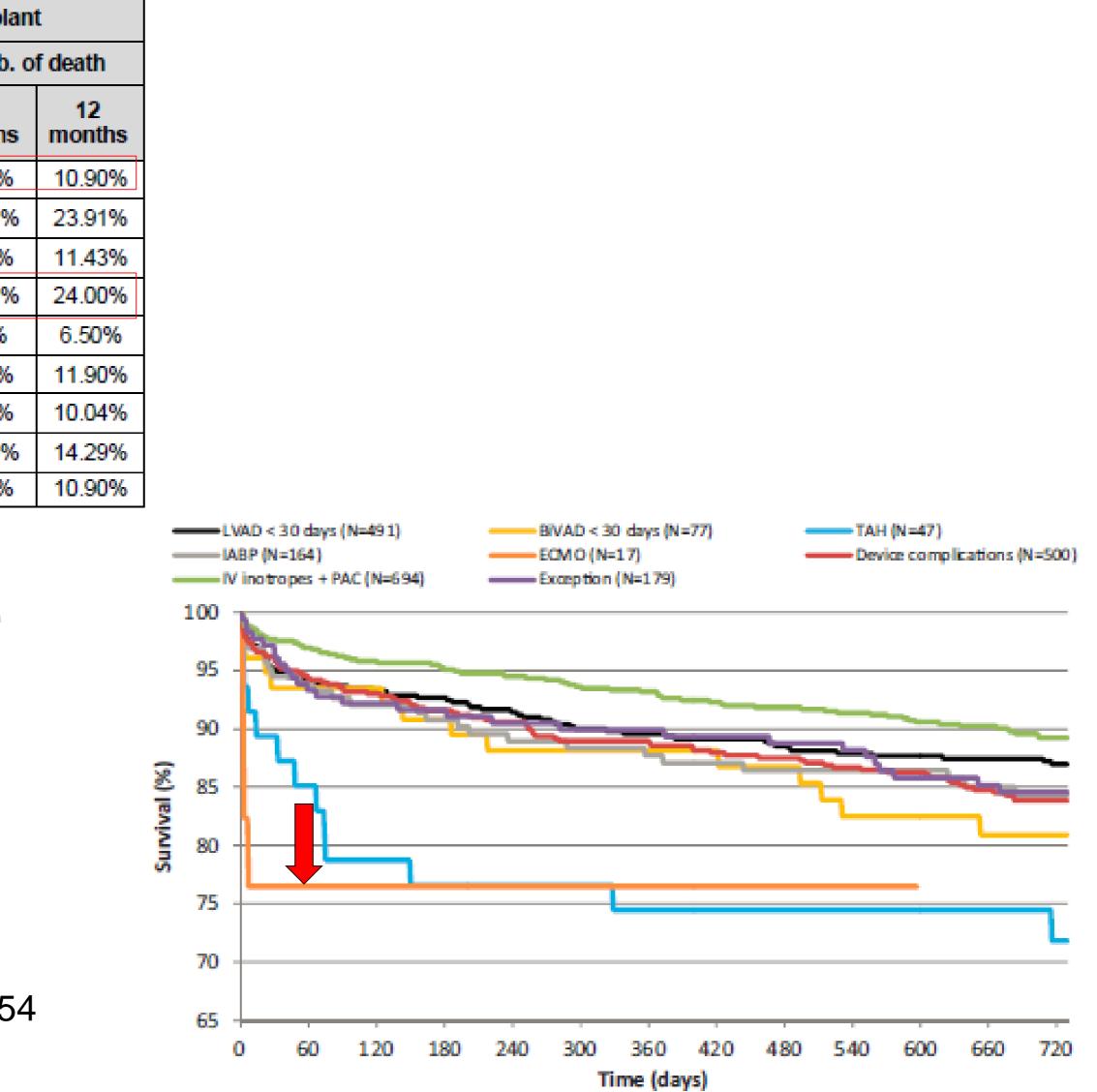
Todd Dardas, MD, MS,\* Nahush A. Mokadam, MD,† Francis Pagani, MD, PHD,‡ Keith Aaronson, MD, MS, § Wayne C. Levy, MD\*



- The historic allowance for 30 days of elective status 1A time for implanted LVADs creates disparities in risk among status 1A registrants.
- The allowance of 30 days of elective status 1A time should not be allocated to stable registrants with implanted LVADs.
- Registrants supported with paracorporeal ventricular assist devices should be listed status 1A indefinitely.

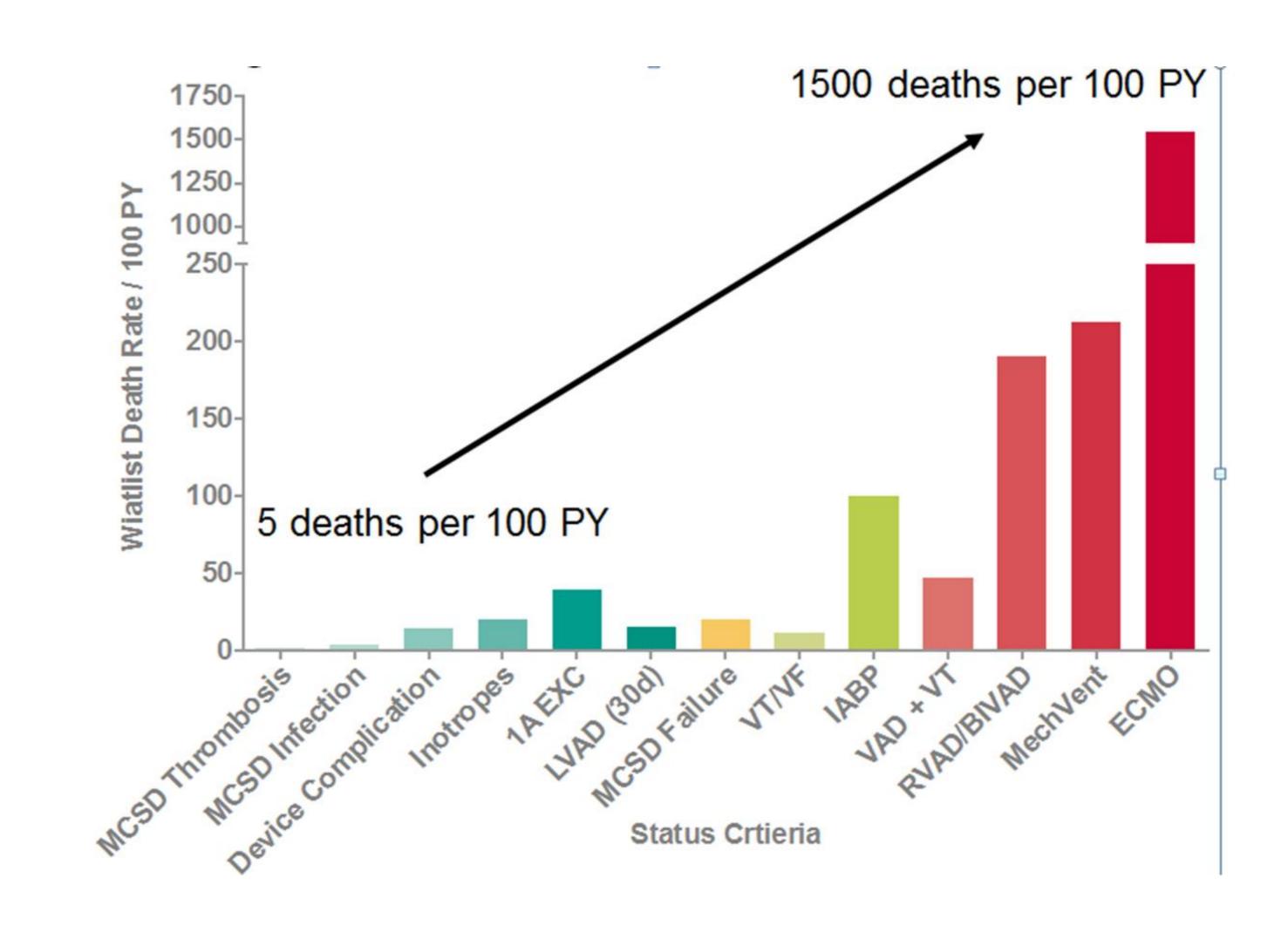
J Am Coll Cardiol 2012;60:36–43

### The Future Direction of the Adult Heart Allocation System in the United States


#### Table 1: All sub-criteria while waiting for those ever Status 1A Criteria A or B

| Status<br>1A<br>criteria | All sub-         | Waiting list    |             |                  |                   |             |                  |                   |                           | Transpla    |  |
|--------------------------|------------------|-----------------|-------------|------------------|-------------------|-------------|------------------|-------------------|---------------------------|-------------|--|
|                          | criteria         | # listed        | Pi          | Prob. of TX      |                   |             | Prob. of Death   |                   |                           | Prob.       |  |
|                          | while<br>waiting | (2010-<br>2011) | 1<br>month+ | 6<br>months<br>+ | 12<br>months<br>+ | 1<br>month+ | 6<br>months<br>+ | 12<br>months<br>+ | # TXed<br>(2010-<br>2011) | 6<br>months |  |
|                          | (i)              | 1,169           | 37.2%       | 63.3%            | 72.5%             | 3.0%        | 5.1%             | 5.7%              | 1,138                     | 8.09%       |  |
| Α                        | (ii)             | 58              | 20.7%       | 70.7%            | *                 | 3.5%        | 8.6%             | *                 | 46.                       | 21.74%      |  |
| A                        | (iii)            | 452             | 31.9%       | 52.7%            | 60.6%             | 10.2%       | 15.5%            | 16.6%             | 344                       | 8.14%       |  |
|                          | (iv)             | 70              | 24.3%       | 31.4%            | *                 | 35.7%       | 35.7%            | *                 | 25                        | 24.00%      |  |
|                          | (i)              | 113             | 38.1%       | 70.8%            | 75.2%             | 1.8%        | 6.2%             | 7.1%              | 93                        | 6.5%        |  |
|                          | (ii)             | 228             | 21.5%       | 67.1%            | 76.3%             | 0.9%        | 4.8%             | 6.1%              | 262                       | 8.02%       |  |
| В                        | (iii)            | 80              | 21.2%       | 55.0%            | 65.0%             | 7.5%        | 11.2%            | 12.5%             | 80                        | 8.75%       |  |
|                          | (iv)             | 28              | 14.3%       | 57.1%            | *                 | 10.7%       | 10.7%            | *                 | 28                        | 14.29%      |  |
|                          | (v)              | 83              | 26.5%       | 63.9%            | 67.5%             | 1.2%        | 10.8%            | 10.8%             | 93                        | 7.53%       |  |

Sub-criteria: A(i)=VAD for 30 days A(ii)=total artificial heart A(iii)-Intra-aortic balloon pump (IABP) A(iv)=ECMO


B(i)=MCSD with Thromboembolism B(ii)=MCSD with infection B(iii)=MCSD with malfunction B(iv)=MCSD with life-threatening ventricular arrhythmia B(v)=MCSD with other complication

American Journal of Transplantation 2015; 15: 44–54



# Why was change thought to be necessary?

## Disparate urgency risk with Status 1A



## **New Six-Tier Adult Allocation System**

| Status 1 | VA ECMO<br>Non-dischargeable surgical<br>MCSD with life-threatening                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status 2 | <ul> <li>Non-dischargeable, surgica</li> <li>IABP</li> <li>V-tach / V-fib, mechanical s</li> <li>MCSD with device malfunc</li> <li>TAH, BiVAD, RVAD, or VA</li> </ul> |
|          | <ul> <li>Percutaneous endovascular</li> <li>Dischargeable LVAD for dis</li> <li>Multiple inotropes or single</li> <li>VA ECMO after 7 days; per</li> </ul>            |
| Status 3 | 14 days<br>Non-dischargeable, surgical<br>MCSD with one of the follo<br>• device infection, hemolyst<br>insufficiency                                                 |
| Status 4 | • Dischargeable LVAD without<br>Inotropes without hemodyn<br>Retransplant<br>Diagnosis of one of the fol<br>with intractable angina, hyp                              |
| Status 5 | On the waitlist for at least o                                                                                                                                        |
| Status 6 | All remaining active candid                                                                                                                                           |

ally implanted, non-endovascular biventricular support device ng ventricular arrhythmia

ally implanted, non-endovascular LVAD

support not required ction/mechanical failure AD for single ventricle patients r MCSD

iscretionary 30 days

le high-dose inotrope with continuous hemodynamic monitoring rcutaneous endovascular circulatory support device or IABP after

ally implanted, non-endovascular LVAD after 14 days lowing:

sis, pump thrombosis, right heart failure, mucosal bleeding, aortic

out discretionary 30 days namic monitoring

ollowing: congenital heart disease (CHD), ischemic heart disease pertrophic cardiomyopathy, restrictive cardiomyopathy, amyloidosis

one other organ at the same hospital

dates

# **New Heart Allocation System Nuances**

Status 1

• VA ECMO

- MCSD with life-threatening ventricular arrhythmia

#### Hemodynamic Criteria for Status 1 for ECMO

Within 7 days prior to VA ECMO support, all of the following are true within one 24 hour period:

- SBP < 90 mmHg
- PCWP > 15 mmHg

#### Initial

If hemodynamic measurements could not be obtained within 7 days prior to VA ECMO support, at least one of the following is true within 24 hours prior to VA ECMO support:

- CPR was performed on the candidate
- SBP < 70 mmHg
- Arterial lactate > 4 mmol/L
- AST or ALT >1,000 U/L

Candidate continues to be supported by ECMO with a contraindication to durable device and **at least one** of the following:

- After • MAP <60 mmHg
- CI < 2.0 L/min/m27 days
  - PCWP > 15 mmHg
  - $SvO_2 < 50$  % measured by central venous catheter

• Non-dischargeable surgically implanted, non-endovacular biventricular support device

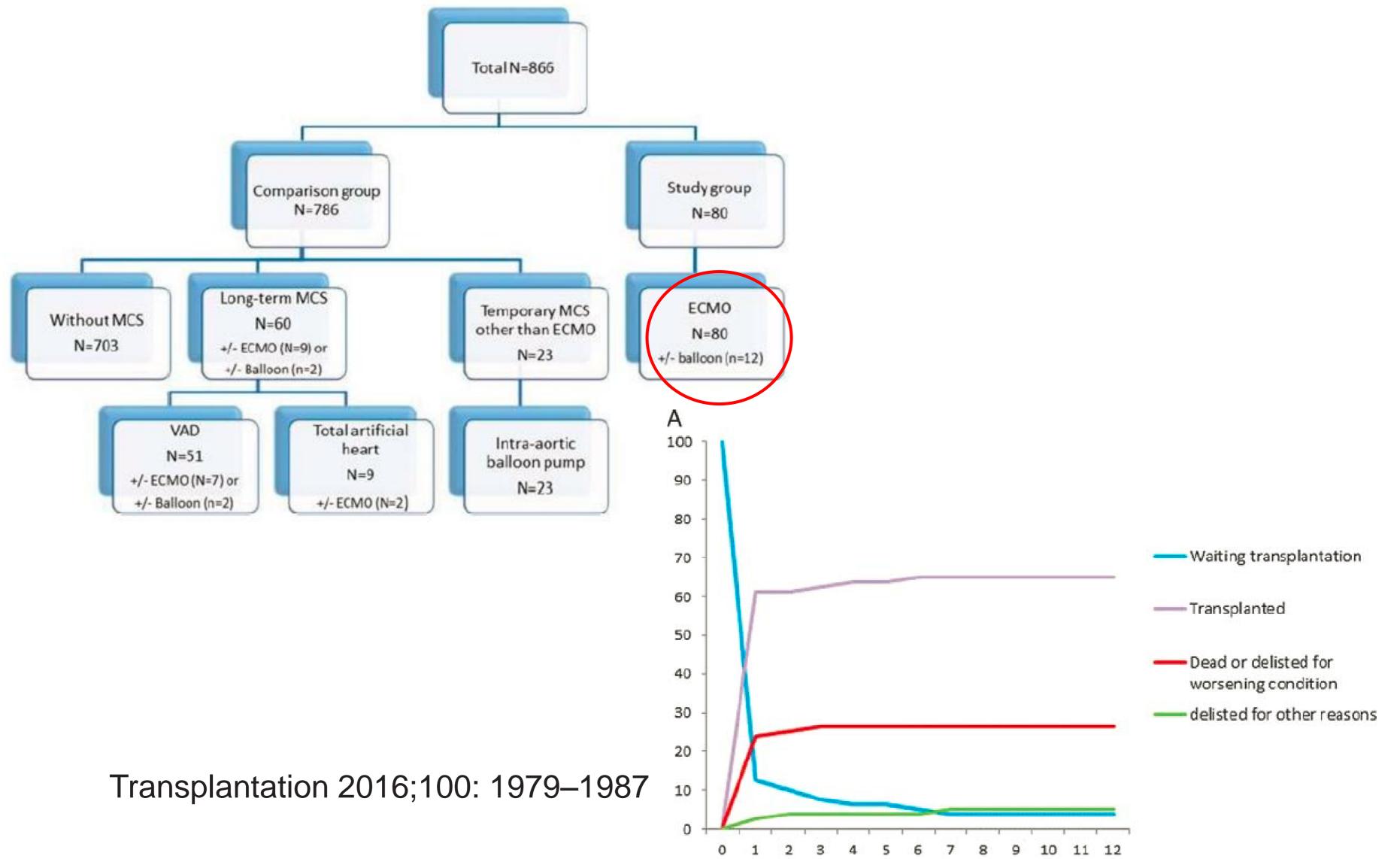
• CI < 1.8 L/min/m2 if not on inotropes or < 2.0 L/min/m2 if on at least one inotrope

- Good initially for 7 days
- After initial 7 days, patient would still need to meet criteria for extending Status 1



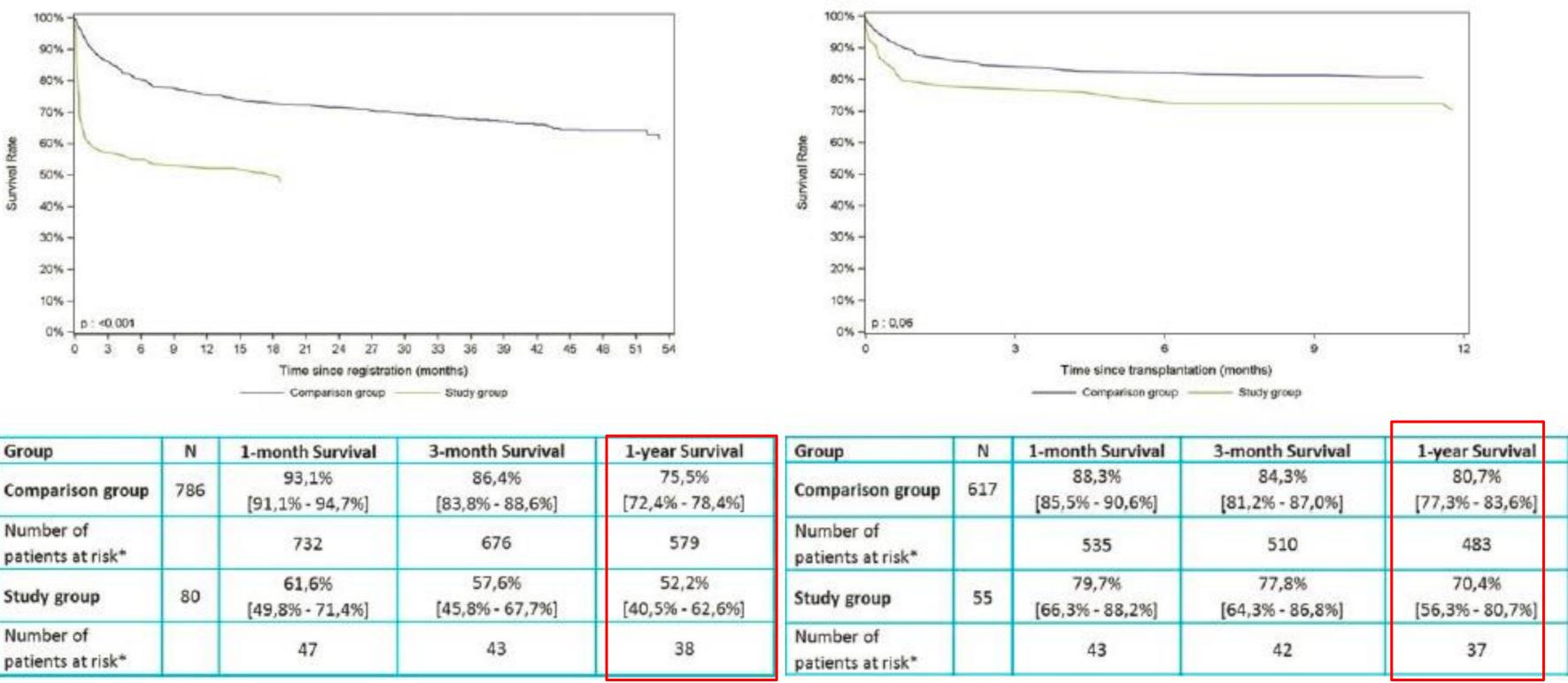
#### Heart Failure Specialist reaction following new Heart Allocation Proposal






## **ECMO as a Bridge to Heart Transplant**

## What does the international experience show?


# What is the US experience?

## Impact of Heart Transplantation on Survival in **Patients on VA ECMO at Listing in France**



#### Impact of Heart Transplantation on Survival in Patients on VA ECMO at Listing in France

#### **KM SV All ECMO vs No ECMO**

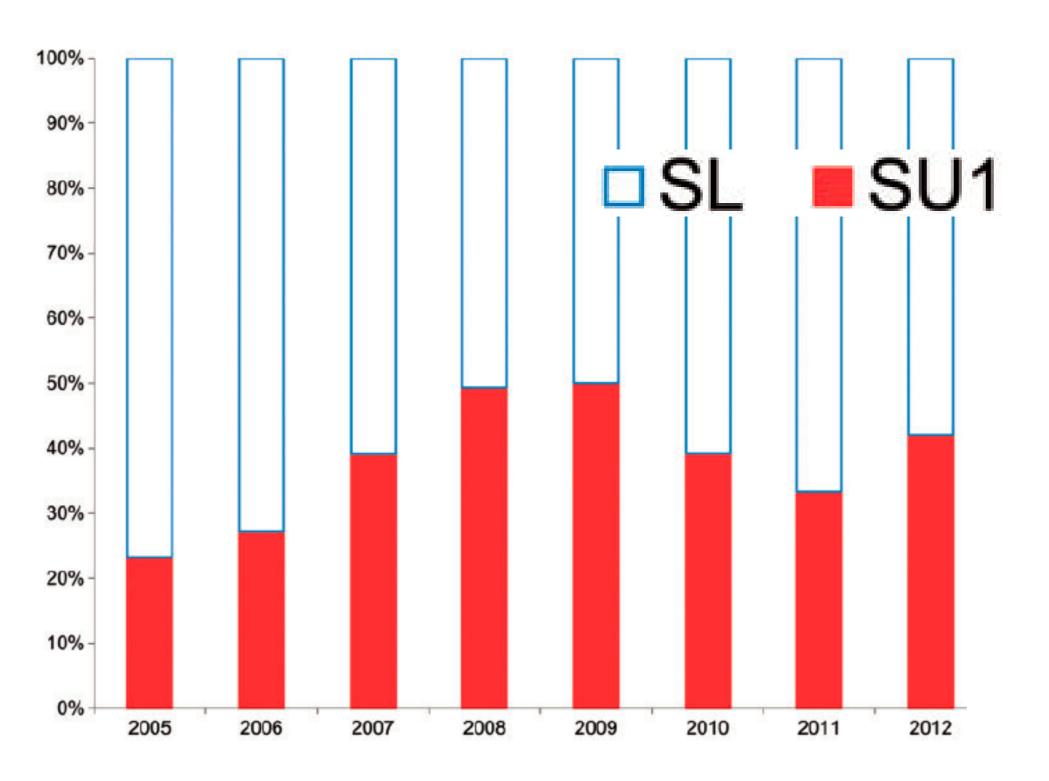


| Group                          | N   | 1-month Survival         | 3-month Survival         | 1-year       |
|--------------------------------|-----|--------------------------|--------------------------|--------------|
| Comparison group               | 786 | 93,1%<br>[91,1% - 94,7%] | 86,4%<br>[83,8% - 88,6%] | 75<br>[72,4% |
| Number of<br>patients at risk* |     | 732                      | 676                      | 5            |
| Study group                    | 80  | 61,6%<br>[49,8% - 71,4%] | 57,6%<br>[45,8% - 67,7%] | 52<br>[40,5% |
| Number of<br>patients at risk* |     | 47                       | 43                       | 3            |

**Conclusions.** Transplantation provides a survival benefit in listed patients on VA-ECMO even if post-transplant survival remains inferior than for patients without VA-ECMO. Transplantation may be considered to be an acceptable primary therapy in selected patients on VA-ECMO.

**KM SV ECMO transplanted** 

Transplantation 2016;100: 1979–1987


#### High-urgency waiting list for cardiac recipients in France: single-centre 8-year experience

#### Criteria Special Urgency1 status( granted for 48 h, renewable once)

. continuous infusion of intravenous inotropic drugs Dobutamine 10mg/kg/min, epi or norepi 0.1mg/kg/min

- . extracorporeal membrane oxygenator
- . intra-aortic balloon pump support

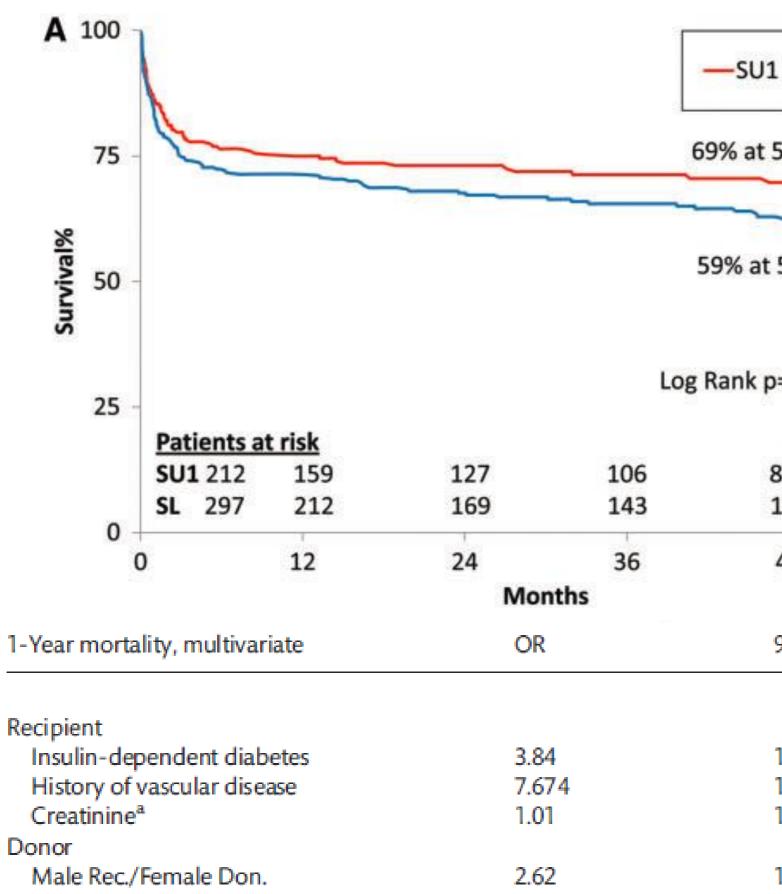
in whom a VAD or total artificial heart (TAH) was indicated in order to avoid the bridge-tobridge step and directly move towards transplantation



European Journal of Cardio-Thoracic Surgery 51 (2017) 271–278

#### High-urgency waiting list for cardiac recipients in France: single-centre 8-year experience

Gender (female) Age (years) Age  $\geq$  50 years Age  $\geq$  60 years Weight (kg) Height (cm) BSA (m<sup>2</sup>) Diagnosis Ischaemic Idiopathic Congenital Other Time on waiting list (days) Diabetes Insulin-dependent Noninsulin-dependent Serum creatinine (µmol/l) Creatinine clearance (ml/min) Prior sternotomy CRT ICD History of vascular disease Inotrope dependent Preoperative ECMO Peripheral Central Ventilator dependent


All (n = 212)

| Recipient             |          |
|-----------------------|----------|
| Preoperative ECMO     | 81 (38%) |
| Peripheral canulation | 44 (21%) |
| Central canulation    | 37 (17%) |

| Overall     |              |         |  |  |  |
|-------------|--------------|---------|--|--|--|
| SL (n =297) | SU1 (n =212) | P-value |  |  |  |
| 78 (26%)    | 39 (18%)     | 0.04    |  |  |  |
| 51 ± 13     | 47 ± 15      | < 0.01  |  |  |  |
| 198 (67%)   | 114 (54%)    | < 0.01  |  |  |  |
| 83 (28%)    | 52 (25%)     | 0.39    |  |  |  |
| 70 ± 14     | 73 ± 16      | 0.11    |  |  |  |
| 170 ± 8     | 173 ± 8      | < 0.01  |  |  |  |
| 1.82 ± 0.20 | 1.86 ± 0.23  | 0.06    |  |  |  |
| 101 (34%)   | 64 (30%)     | 0.36    |  |  |  |
| 114 (38%)   | 95 (45%)     | 0.15    |  |  |  |
| 9 (3%)      | 2 (1%)       | 0.11    |  |  |  |
| 73 (25%)    | 51 (24%)     | 0.89    |  |  |  |
| 160 ± 283   | 40 ± 94      | < 0.01  |  |  |  |
| 48 (16%)    | 42 (20%)     | 0.29    |  |  |  |
| 30 (10%)    | 14 (7%)      | 0.16    |  |  |  |
| 18 (6%)     | 28 (13%)     | < 0.01  |  |  |  |
| 111 ± 50    | 121 ± 68     | 0.17    |  |  |  |
| 77 ± 38     | 88 ± 52      | < 0.01  |  |  |  |
| 77 (26%)    | 66 (31%)     | 0.2     |  |  |  |
| 70 (24%)    | 42 (20%)     | 0.31    |  |  |  |
| 134 (45%)   | 79 (37%)     | 0.08    |  |  |  |
| 19 (6%)     | 7 (3%)       | 0.12    |  |  |  |
| 28 (9%)     | 164 (77%)    | < 0.01  |  |  |  |
| 8 (3%)      | 81 (38%)     | < 0.01  |  |  |  |
| 3 (1%)      | 44 (21%)     | < 0.01  |  |  |  |
| 5 (2%)      | 37 (17%)     | < 0.01  |  |  |  |
| 4 (1%)      | 41 (19%)     | <0.01   |  |  |  |

| Era I (n = 101)(2005/08) | Era II (n = 111)(2009/12) | P-value |
|--------------------------|---------------------------|---------|
| 41 (41%)                 | 4 <del>0 (36%)</del>      | 0.49    |
| 14 (14%)                 | 30 (27%)                  | <0.01   |
| 27 (27%)                 | 10 (9%)                   | <0.01   |

#### High-urgency waiting list for cardiac recipients in France: single-centre 8-year experience



CONCLUSIONS: Special Urgency1 waiting list allows allocating cardiac donors for critically ill patients without increasing early and midterm mortality. Careful selection of recipients is mandatory in order to improve outcomes.

| 1 —SL         |             |     | Table 3:<br>variable a |              | rs for | mortality: | Propens | ity-score multi- |
|---------------|-------------|-----|------------------------|--------------|--------|------------|---------|------------------|
| 5 yrs; 95% (  | CI 60%;74%  |     |                        | ,            |        |            |         |                  |
|               | 13          |     | 1-Year more            | tality       | OR     | 95% CI     | P-value | c-Statistics     |
|               |             |     | Recipient              |              |        |            |         | 0.72             |
| 5yrs; 95% C   | 1 52%.65%   |     | Propensity :           | score        | 1.04   | 0.91-1.19  | 0.57    | 0.72             |
| . Jyrs, 35% C | 1 3370,0370 |     | SU1 priority           |              | 0.70   | 0.31-1.56  | 0.38    |                  |
|               |             |     |                        | e > 60 years | 2.99   | 1.50-5.96  | <0.01   |                  |
|               |             |     | Ventilator d           |              | 3.60   | 1.08-12.01 | 0.04    |                  |
| p=0,16        |             | (   | Donor                  | -            |        |            |         |                  |
| 9-0,10        |             |     | Gender mis             | match        | 0.49   | 0.28-0.86  | 0.01    |                  |
|               |             |     | Age                    |              | 1.03   | 1.004-1.06 | 0.03    |                  |
| 85            | 64          |     |                        |              |        |            |         |                  |
| 111           | 90          |     |                        |              |        |            |         |                  |
|               |             |     |                        |              |        |            |         |                  |
| 48            | 60          |     |                        |              |        |            |         |                  |
| 95% CI        |             | P-  | value                  |              |        |            |         |                  |
|               |             |     |                        |              |        |            |         |                  |
| 1.08-13.65    |             | 0.  | 04                     |              |        |            |         |                  |
| 1.31-45.12    |             | 0.  | 02                     |              |        |            |         |                  |
| 1.01-1.02     |             | <0. | 01                     |              |        |            |         |                  |
| 1.15-5.96     |             | 0.  | 02                     |              |        |            |         |                  |

# Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: a nationwide Spanish registry

#### Table 1 Devices in place at the time of high-urgent

#### listing

| Devices                               | Patients, n |
|---------------------------------------|-------------|
| VA-ECMO                               | 169 (58%)   |
| Peripheral insertion, femoral artery* | 144         |
| Peripheral insertion, other artery*   | 17          |
| Central insertion <sup>b</sup>        | 8           |
| T-LVAD                                | 70 (24%)    |
| Levitronix CentriMag <sup>b</sup>     | 51          |
| Impella Recover*                      | 12          |
| Abiomed BVS 5000F                     | 6           |
| Maquet Rotaflow <sup>b</sup>          | 1           |
| T-8/VAD                               | 52 (18%)    |
| Levitronix CentriMag <sup>b</sup>     | 36          |
| Abiomed BVS 5000 <sup>4</sup>         | 14          |
| Abiomed AB 5000 <sup>c</sup>          | 1           |
| Sprin Revolution <sup>b</sup>         | 1           |
|                                       |             |

| Variables                                                | T-LYAD (n= 70) | T-BiVAD (n = 52) | VA-ECMO (n = 169) | P-value |
|----------------------------------------------------------|----------------|------------------|-------------------|---------|
| Clinical history                                         |                |                  |                   |         |
| Age (years)                                              | 52±12          | 52±10            | 50±13             | 0.517   |
| Fernale and                                              | 22.9%          | 23.1%            | 24.3%             | 0.967   |
| Body mass index (kg/m <sup>2</sup> )                     | 25±4           | 26±4             | 26±5              | 0.313   |
| Days from hospital admission to device insertion         | 10±15          | 14±22            | 12±20             | 0.440   |
| Days from device insertion to high-urgent listing        | 11±14          | 7±9              | 3±5               | <0.001  |
| Patients in waiting list prior to device insertion       | 28.6%          | 23.1%            | 27.8%             | 0.948   |
| Ischaemic heart disease                                  | 61.4%          | 44.2%            | 53.3%             | 0.168   |
| Cardiogenic shock related to acute myocardial infarction | 47.1%          | 25.0%            | 32%               | 0.023   |
| Cardiogenic shock following cardiac surgery              | 43%            | 13.5%            | 10.1%             | 0.194   |
| Diabetes mellitus                                        | 15.7%          | 23.1%            | 25.4%             | 0.262   |
| Hypertension                                             | 24.3%          | 34.6%            | 33.1%             | 0.344   |
| Hypercholesterolaemia                                    | 30%            | 36.5%            | 33.1%             | 0.748   |
| Previous open-chest cardiac surgery                      | 8.6%           | 15.4%            | 26.6%             | 0.004   |
|                                                          | 2 T.W.         | F 200            | 8.250             | A 8 9 8 |

| In-hospital postoperative outcomes        |             |
|-------------------------------------------|-------------|
| Excessive surgical bleeding               | 72 (31%)    |
| Primary graft failure                     | 75 (33%)    |
| Right ventricular failure                 | 41 (18%)    |
| Left ventricular or biventricular failure | 34 (15%)    |
| T-MCS after transplant                    | 34 (15%)    |
| Open-chest redo surgery                   | 40 (17%)    |
| Renal failure                             | 64 (28%)    |
| Postoperative infection                   | 121 (53%)   |
| In-hospital postoperative death           | 61 (26%)    |
| Days on ventilator after transplant       | 11±17       |
| Days of ICU stay after transplant         | 18±18       |
| Days of hospital stay after transplant    | $38 \pm 37$ |
|                                           |             |

| 15 (25%)    | 18 (43%)       | 39 (30%) | 0.163 |
|-------------|----------------|----------|-------|
| 16 (27%)    | 17 (41%)       | 42 (33%) | 0.369 |
| 7 (12%)     | 10 (24%)       | 24 (19%) | 0.645 |
| 9 (15%)     | 7 (17%)        | 18 (14%) | 0.422 |
| 7 (12%)     | 6 (14%)        | 21 (16%) | 0.729 |
| 6 (10%)     | 10 (24%)       | 24 (19%) | 0.176 |
| 15 (25%)    | 15 (36%)       | 34 (26%) | 0.447 |
| 32 (54%)    | 23 (55%)       | 66 (51%) | 0.883 |
| 7 (12%)     | 11 (26%)       | 43 (33%) | 0.008 |
| <br>8±9     | 10 ± 14        | 13 ± 21  | 0.196 |
| $16 \pm 22$ | 20 ± 19        | 18 ± 19  | 0.725 |
| 36 ± 29     | 39 <u>+</u> 34 | 38 ± 40  | 0.930 |
|             |                |          |       |

### **Outcomes and predictors of 1 y Mortality**

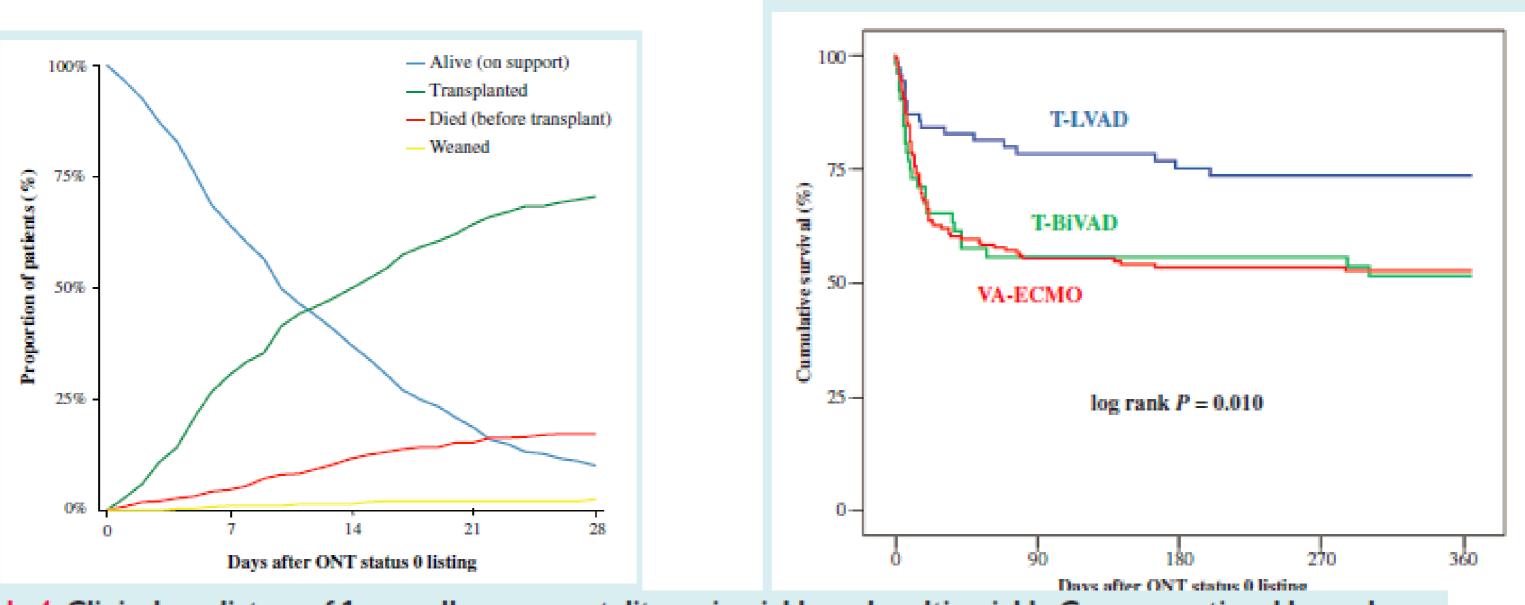



Table 4 Clinical predictors of 1-year all-cause mortality: univariable and multivariable Cox proportional hazards regression

|                                           | Univariable analysis |           |         | Multivariable analysis |           |         |  |
|-------------------------------------------|----------------------|-----------|---------|------------------------|-----------|---------|--|
|                                           | Unadjusted HR        | 95% CI    | P-value | Adjusted HR            | 95% CI    | P-value |  |
| Age (per 10 years)                        | 1.21                 | 1.03-1.42 | 0.023   | 1.29                   | 1.06-1.56 | 0.010   |  |
| Vasoactive-inotropic score (per 10 units) | 1.03                 | 1.06-1.09 | < 0.001 | 1.07                   | 1.04-1.10 | < 0.001 |  |
| Creatinine (mg/dL)                        | 1.33                 | 1.10-1.60 | 0.004   | -                      | -         | -       |  |
| Lactate (mmol/L)                          | 1.11                 | 1.03-1.21 | 0.009   | 1.10                   | 1.00-1.20 | 0.049   |  |
| Renal replacement therapy                 | 2.22                 | 1.35-3.67 | < 0.001 | 2.02                   | 1.06-3.84 | 0.032   |  |
| Isolated LVAD support                     | 0.47                 | 0.29-0.78 | 0.003   | 0.52                   | 0.30-0.92 | 0.025   |  |
| Mechanical ventilation                    | 1.67                 | 1.12-2.49 | 0.012   | -                      | -         | -       |  |
| Intra-aortic balloon pump                 | 1.48                 | 1.03-2.12 | 0.033   | -                      | -         | -       |  |
| Active infection requiring i.v. therapy   | 1.74                 | 1.08-2.02 | 0.023   | 2.13                   | 1.20-2.79 | 0.010   |  |
| INTERMACS profile 1                       | 2.03                 | 1.42-2.90 | < 0.001 | -                      | _         | _       |  |

European Journal of Heart Failure (2018) 20, 178–186

#### **Clinical outcomes of temporary mechanical circulatory support as a direct** bridge to heart transplantation: a nationwide Spanish registry

- - 11.4%, 25% and 19.5%, respectively(P = 0.143).

Temporary devices may be used to bridge critically ill candidates directly to heart transplantation in a setting of short waiting list times, as is the case of Spain. In our series, bridging with T-LVAD was associated with more favourable outcomes than bridging with T-BiVAD or VA-ECMO.

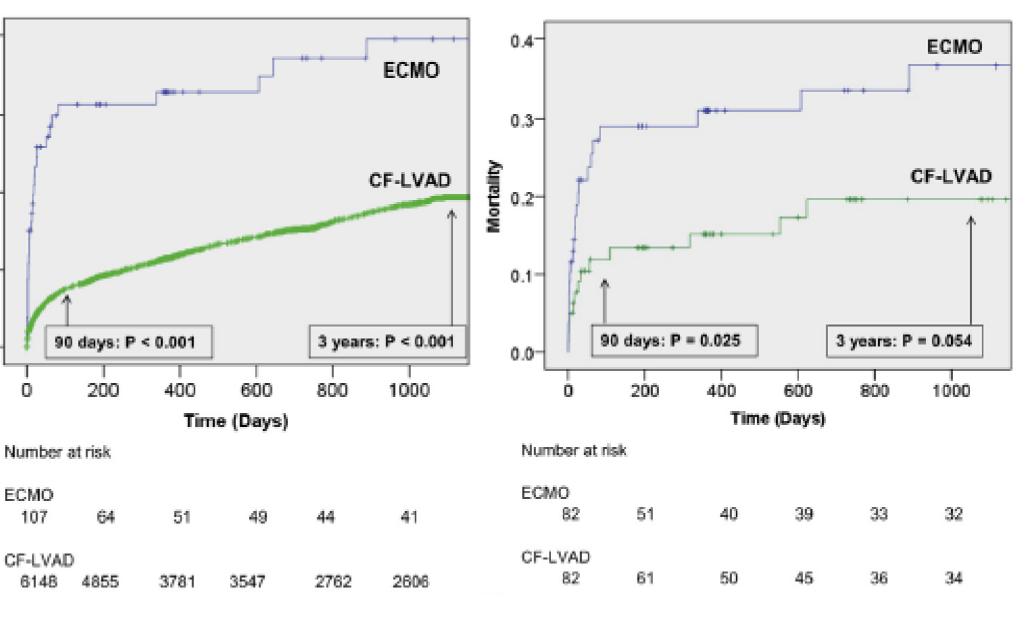
European Journal of Heart Failure (2018) 20, 178–186

Mean time from high-urgent listing to HT was 7.6±8.5 days (range 0–81) days), varying significantly among modalities of support (T-LVAD: 8.3±8.1 days; T-BiVAD: 10.5±3.4 days; VA-ECMO: 6.5±6.2 days; P = 0.024).

Rates of transplantation during support were 84.3%, 75% and 78.1% in patients listed on T-LVADs, T-BiVADs, and VA-ECMO, respectively (P =0.414). Rates of death during support (before transplantation) were

#### **Extracorporeal membrane oxygenation as a direct bridge** to heart transplantation in adults (US)

#### **UNOS 2003-2016 ECMO-HTX vs CFLVAD-HTX**


| TABLE 1. Baseline recipient characteristics |                    |                       |            |                   |
|---------------------------------------------|--------------------|-----------------------|------------|-------------------|
| Characteristic                              | ECMO<br>(n = 107)  | CF-LVAD<br>(n = 6148) | P<br>value | 0.4-              |
| Age                                         | $44.3 \pm 15.2 *$  | $53.2\pm12.2$         | <.001*     |                   |
| Total days on waiting list                  | $123\pm425^{\ast}$ | $305\pm 369^*$        | <.001*     | 0.3-              |
| ECMO at listing                             | 40 (37.4)*         | 33 (0.5)*             | <.001*     | Mortality<br>0.5– |
| Female gender                               | 34 (31.8)*         | 1177 (19.1)*          | .001*      | No.2              |
| Body mass index                             | $25.6\pm5.1^*$     | $28.3\pm5.0^*$        | <.001*     | 0.1-              |
| Heart failure etiology                      |                    |                       | <.001*     |                   |
| Dilated cardiomyopathy                      | 43 (40.2)*         | 3309 (53.8)*          |            | 0.0               |
| Ischemic                                    | 32 (31.8)*         | 2523 (41.0)*          |            |                   |
| Congenital                                  | 11 (10.3)*         | 36 (0.6)*             |            |                   |
| Others                                      | 19 (17.8)*         | 280 (4.6)*            |            |                   |
| Pulmonary vascular                          | $2.76\pm1.96$      | $2.31 \pm 1.73$       | .042*      |                   |
| resistance (Woods units)                    |                    |                       |            | 1                 |
| Mechanical ventilation                      | 42 (39.3)*         | 43 (0.7)*             | <.001*     |                   |
| IABP                                        | 26 (24.3)*         | 62 (1.0)*             | <.001*     |                   |
| Inotropes                                   | 66 (61.7)*         | 479 (7.8)*            | <.001*     |                   |

The Journal of Thoracic and Cardiovascular Surgery 2018 Volume 155, Number 4

#### **Post HTX survival**

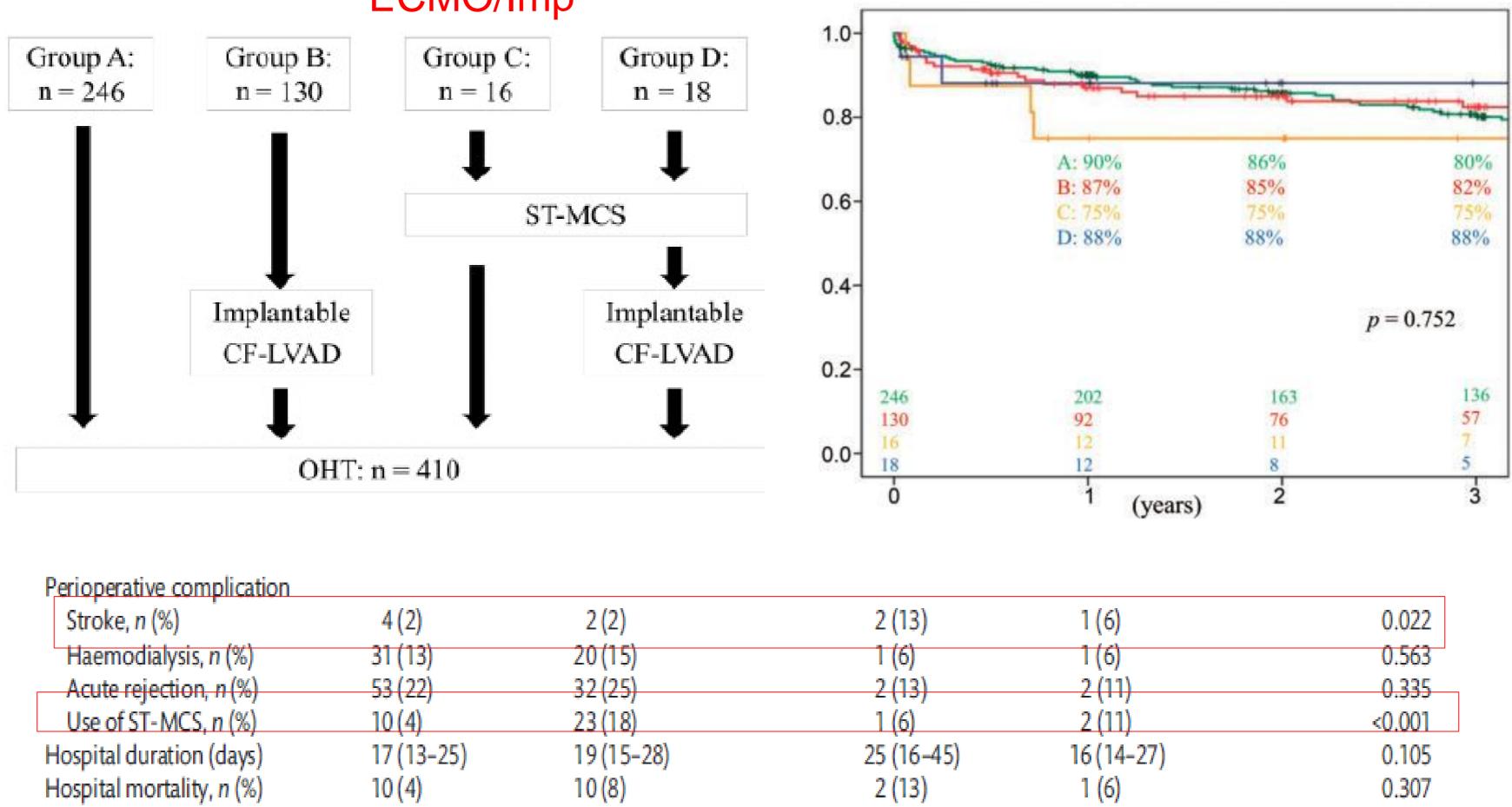
**ECMO vs CFLVAD-HT** 

ECMO vs CFLVAD (M)



# Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults

|                                                | Before propensity match |                       |         | After propensity match |                     |         |
|------------------------------------------------|-------------------------|-----------------------|---------|------------------------|---------------------|---------|
|                                                | ECMO<br>(n = 107)       | CF-LVAD<br>(n = 6148) | P value | ECMO<br>(n = 82)       | CF-LVAD<br>(n = 82) | P value |
| Graft failure                                  | 8 (7.5)                 | 366 (6.0)             | .51     | 6 (7.3)                | 7 (8.5)             | .77     |
| Primary                                        | 6 (5.6)*                | 132 (2.1)*            | .016*   | 5 (6.1)                | 5 (6.1)             | 1.00    |
| Acute/chronic rejection                        | 2 (1.9)                 | 130 (2.1)             | .86     | 1 (1.2)                | 2 (2.4)             | 1.00    |
| Others                                         | 0                       | 104 (1.7)             | .18     | 0                      | 0                   |         |
| Episode of rejection                           | 25 (24.3)               | 1154 (18.8)           | .16     | 20 (24.4)              | 17 (20.7)           | .58     |
| Functional status at the most recent follow-up |                         |                       | <.001*  |                        |                     | .20     |
| Total assistance                               | 32 (49.2)*              | 546 (12.8)*           |         | 22 (44.9)              | 15 (27.8)           |         |
| Some assistance                                | 5 (7.7)*                | 681 (15.9)*           |         | 5 (10.2)               | 7 (13.0)            |         |
| No assistance                                  | 28 (43.1)*              | 3045 (71.3)*          |         | 22 (44.9)              | 32 (59.3)           |         |
| Pacemaker insertion                            | 0*                      | 227 (3.7)*            | .034*   | 0                      | 2 (2.5)             | .25     |
| Renal insufficiency requiring dialysis         | 22 (21.2)*              | 684 (11.3)*           | .002*   | 14 (17.1)              | 9 (11.0)            | .26     |
| CVA                                            | 10 (9.4)*               | 202 (3.3)*            | .001*   | 7 (8.5)                | 3 (3.7)             | .33     |


#### TABLE 4. Posttransplant adverse events before and after propensity-score matching

#### TABLE 5. Primary causes of death in each group before and after propensity-score matching

|                    | Before propensity matching |                    |         | After propensity matching |                         |         |
|--------------------|----------------------------|--------------------|---------|---------------------------|-------------------------|---------|
| Cause of death     | ECMO (n = 37)              | CF-LVAD (n = 1099) | P value | ECMO (n = 27)             | <b>CF-LVAD</b> (n = 14) | P value |
| Graft failure      | 7 (18.9)                   | 155 (14.1)         | .41     | 6 (22.2)                  | 4 (28.6)                | .71     |
| Infection          | 3 (8.1)                    | 181 (16.5)         | .20     | 3 (11.1)                  | 2 (14.3)                | 1.00    |
| Cardiovascular     | 4 (10.8)                   | 190 (17.3)         | .18     | 2 (7.4)                   | 2 (14.3)                | .60     |
| Pulmonary          | 1 (2.7)                    | 62 (5.6)           | .44     | 0                         | 0                       | 1.00    |
| CVA                | 4 (10.8)                   | 63 (5.7)           | .28     | 3 (11.1)                  | 2 (14.3)                | 1.00    |
| Multiorgan failure | 10 (27.0)*                 | 136 (12.4)*        | .009*   | 6 (22.2)                  | 2 (14.3)                | .69     |
| Others             | 8 (21.6)                   | 312 (28.4)         | .37     | 7 (25.9)                  | 2 (14.3)                | .69     |

#### **Outcome of heart transplantation after bridge-to-transplant strategy** using various mechanical circulatory support devices

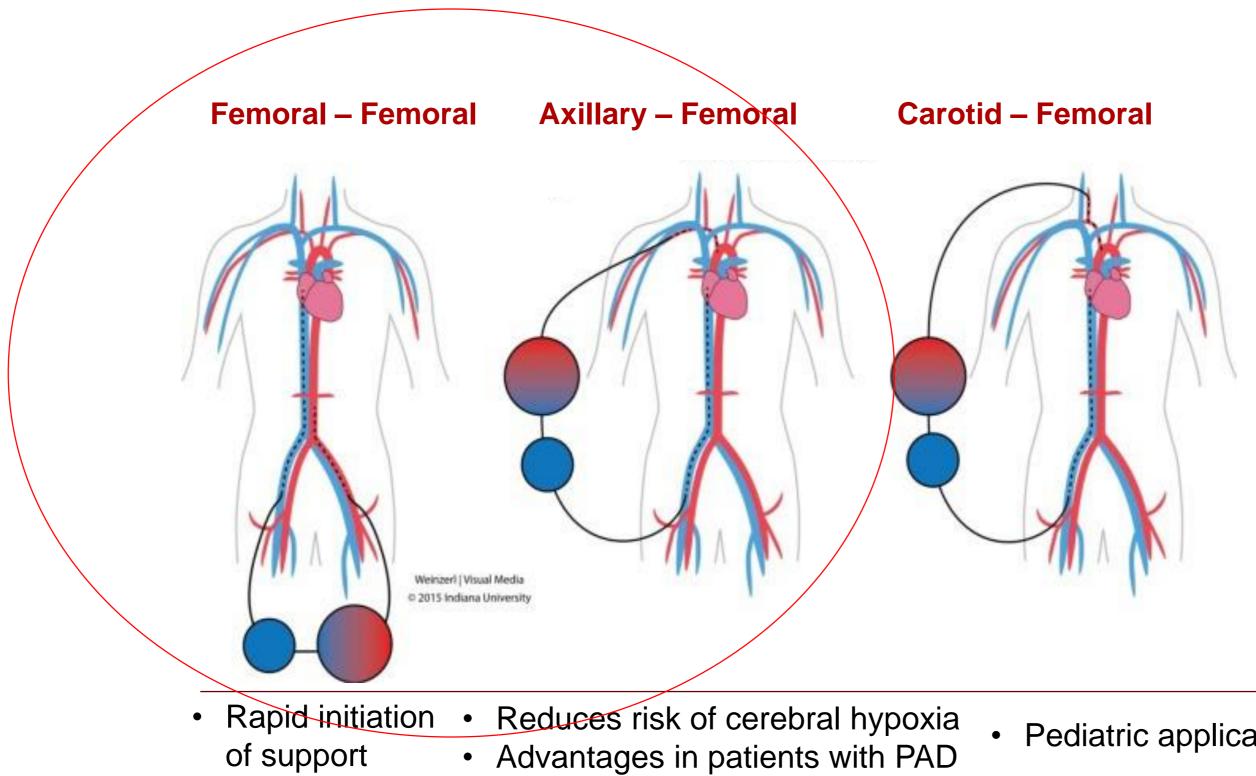
#### ECMO/Imp



| Perioperative complication |            |           |
|----------------------------|------------|-----------|
| Stroke, n (%)              | 4 (2)      | 2(2)      |
| Haemodialysis, n (%)       | 31 (13)    | 20 (15)   |
| Acute rejection, n (%)     | 53 (22)    | 32(25)    |
| Use of ST-MCS, n (%)       | 10 (4)     | 23 (18)   |
| Hospital duration (days)   | 17 (13-25) | 19 (15-2) |
| Hospital mortality, n (%)  | 10 (4)     | 10(8)     |

Interactive CardioVascular and Thoracic Surgery 25 (2017) 918–924

# So... When do we use ECMO as BTT?




## Who should we Bridge on ECMO as BTT

- > Myocarditis (potential for recovery)
- Biventricular Failure (Re-transplants)
- Poor LVAD candidates (restrictive, congenital)
- Previous sternotomies
- $\succ$  Young patients (to prevent LVAD complications?)



### How should patients be supported **Cannulation Strategies for VA ECMO**



Makdisi G, Wang I. J Thoracic Dis. 2015

**Central AO-RA** 

Pediatric application

•Frequently used in post-cardiotomy failure

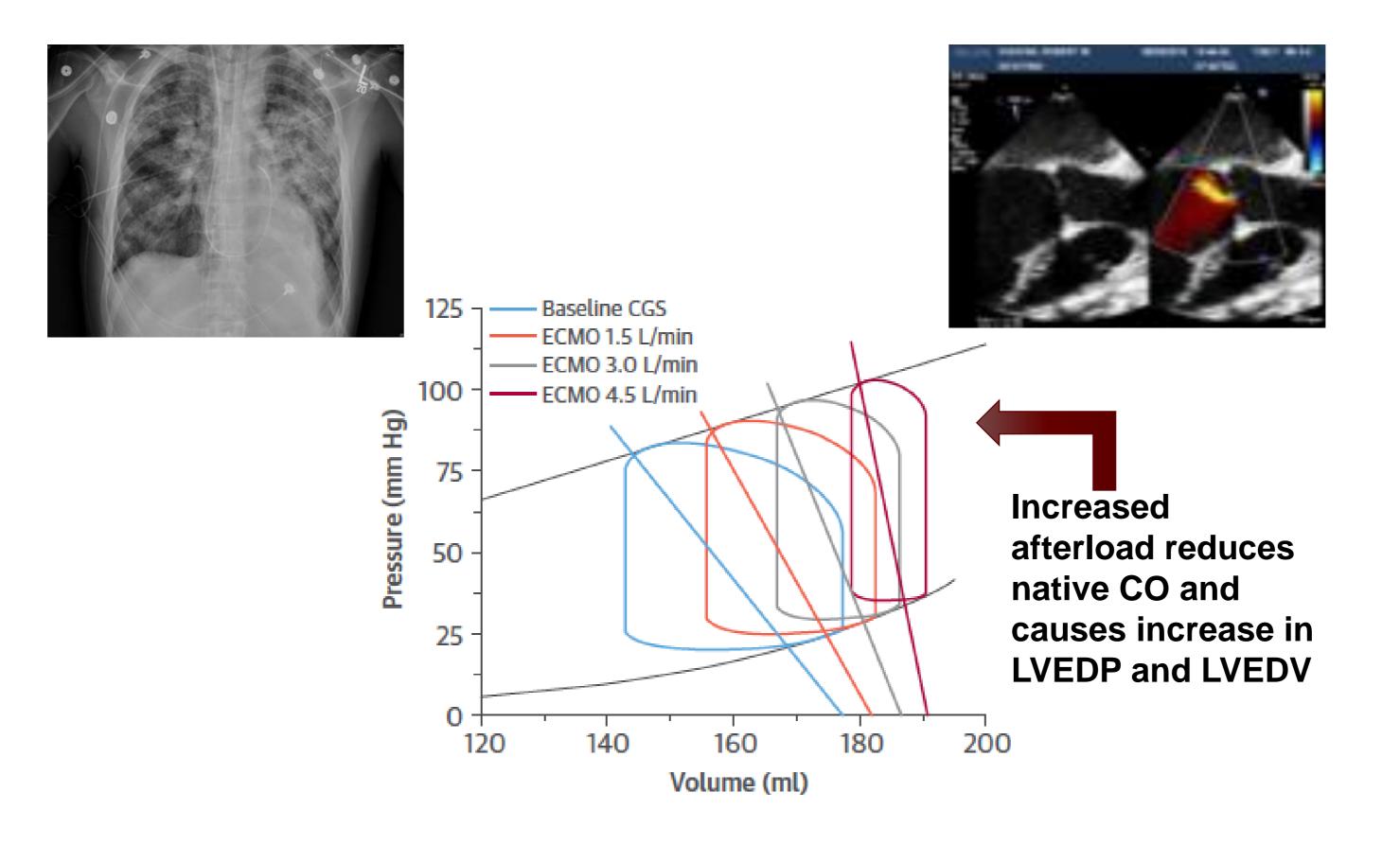
•Superior Drainage

### Limitations of the different cannulation techniques

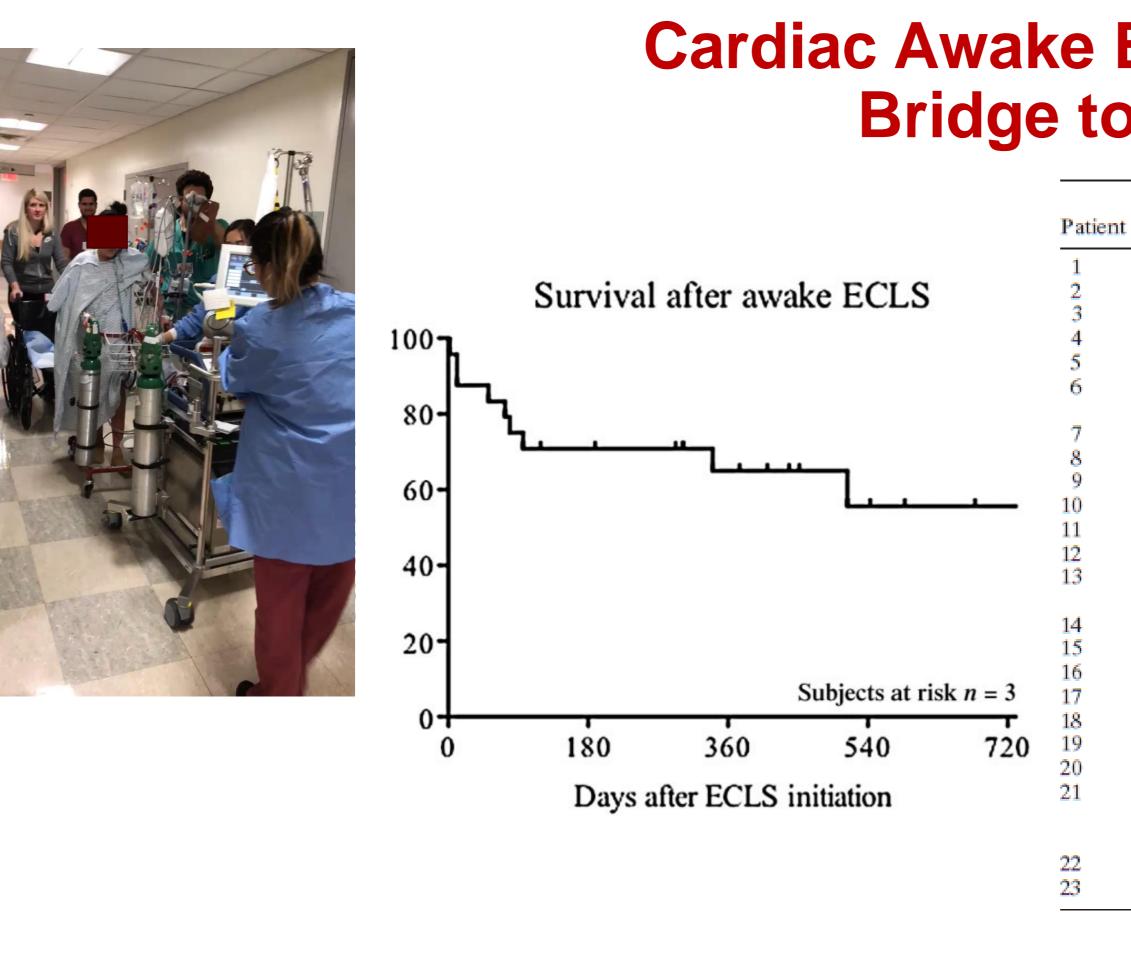

Femoral

Limits mobility Limb complications

Axillary


Allows mobility Antegrade flow Bleeding



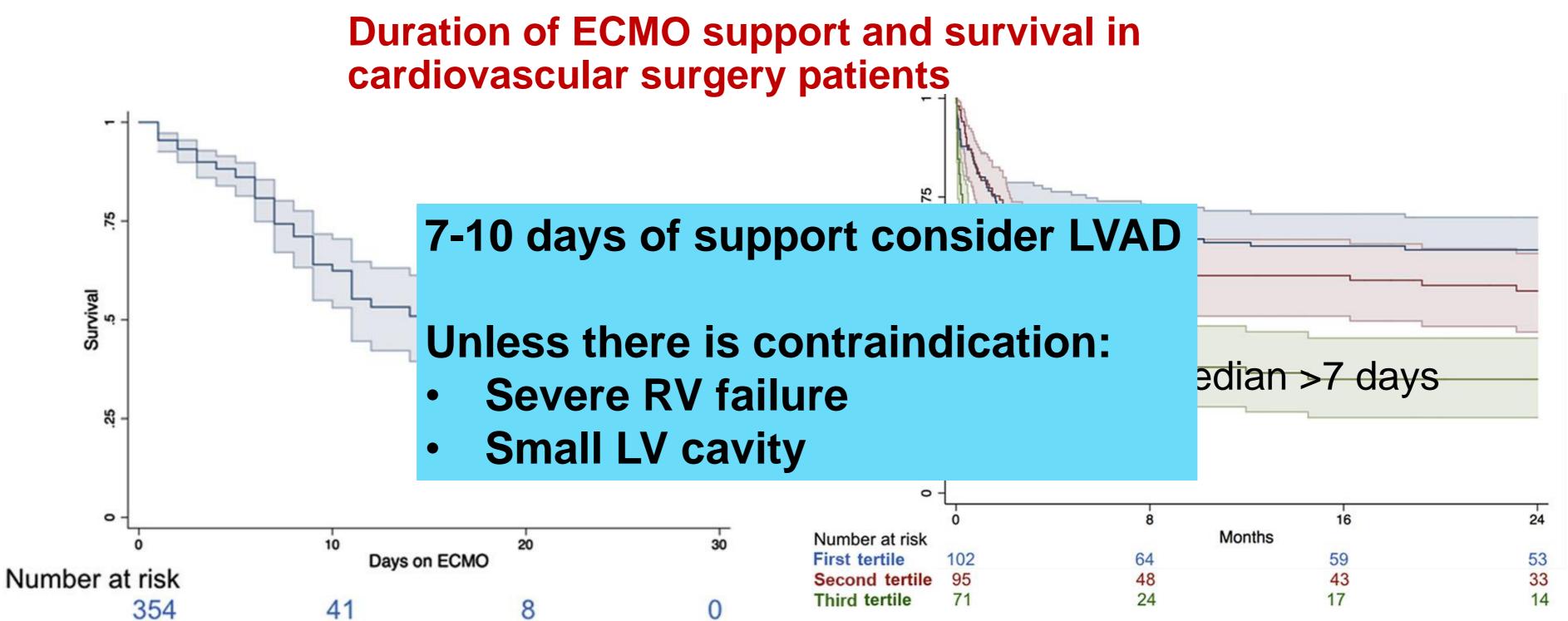





### Hemodynamic Effects of Peripheral VA-ECMO



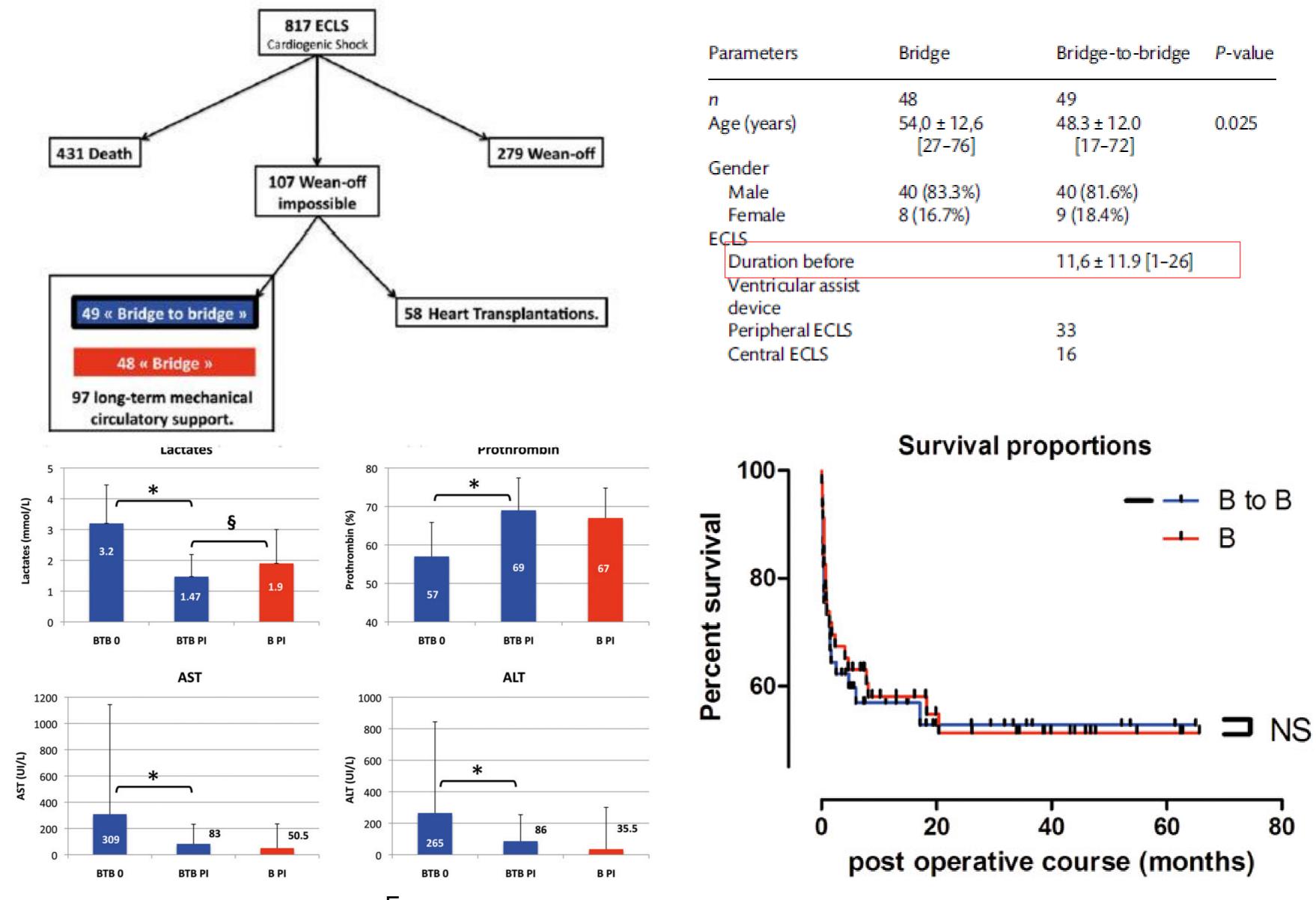
Burkhoff et al. J Am Coll Cardiol 2015;66:2663–74




In acute cardiac failure, early ECLS treatment is a safe, feasible treatment in awake patients allowing a gain of time for final decision. Moreover, this strategy avoids complications associated with sedation and mechanical ventilation and leads to recovery of secondary organ function, enabling destination therapy.

#### **Cardiac Awake Extracorporeal Life Support Bridge to Decision**

| Age | Sex    | Diagnosis                                       | Duration of<br>ECLS (days) | Outcome/destination<br>therapy |
|-----|--------|-------------------------------------------------|----------------------------|--------------------------------|
| 46  | Male   | Myccarditis                                     | 7                          | VAD                            |
| 29  | Male   | Graft failure 65 months after HTX               | 8                          | Death                          |
| 57  | Male   | Graft failure 13 months after HTX               | 12                         | VAD                            |
| 39  | Female | Graft failure 16 weeks after HTX                | 9                          | VAD                            |
| 57  | Male   | Graft failure 18 weeks after HTX                | 24                         | VAD                            |
| 21  | Female | Graft failure 4.5 years after HTX               | 9                          | Re-heart transplantation       |
| 46  | Male   | Dilatative cardiomyopathy                       | 14                         | VAD                            |
| 75  | Male   | Ischemic cardiomyopathy                         | 4                          | VAD                            |
| 26  | Female | Myocarditis                                     | 4                          | VAD                            |
| 49  | Female | Dilatative cardiomyopathy                       | 14                         | VAD                            |
| 49  | Male   | Cardiogenic shock, unknown origin               | 6                          | VAD                            |
| 53  | Male   | Ischemic cardiomyopathy                         | 5                          | VAD                            |
| 48  | Male   | Ischemic cardiomyopathy                         | 10                         | VAD                            |
| 27  | Female | Restrictive cardiomyopathy                      | 52                         | Heart transplantation          |
| 75  | Female | Mitral valve regurgitation IV°                  | 6                          | Mitral valve replacement       |
| 39  | Female | Biventricular failure in acute myeloid leukemia | 2                          | Death                          |
| 25  | Male   | Noncompaction cardiomyopathy                    | 4                          | VAD                            |
| 32  | Male   | Graft failure 14 years after HTX                | 48                         | Re-heart transplantation       |
| 47  | Male   | Ischemic cardiomyopathy                         | 6                          | VAD .                          |
| 45  | Male   | Dilatative cardiomyopathy                       | 8                          | VAD                            |
| 70  | Male   | Acute ischemic mitral valve regurgitation IV°   | 5                          | Mitral valve replacement       |
| 43  | Male   | Ischemic cardiomyopathy                         | 6                          | D                              |
|     |        |                                                 | 6                          | Recovery                       |
| 60  | Male   | Dilatative cardiomyopathy                       | 9                          | VAD                            |


### When do we consider an LVAD?



Conclusions: Prolonged venoarterial ECMO support is associated with poor outcome in adult patients after cardiovascular surgery. Our data suggest reevaluation of therapeutic strategies after 7 days of ECMO support because mortality disproportionally increases afterward.

```
J Thorac Cardiovasc Surg 2018;-:1-6)
```

#### Extracorporeal life support as a bridge to bridge: safe option.



| Parameters         | Bridge                 | Bridge-to-bridge       | P-value |
|--------------------|------------------------|------------------------|---------|
| n                  | 48                     | 49                     |         |
| Age (years)        | 54,0 ± 12,6<br>[27-76] | 48.3 ± 12.0<br>[17-72] | 0.025   |
| Gender             |                        |                        |         |
| Male               | 40 (83.3%)             | 40 (81.6%)             |         |
| Female             | 8 (16.7%)              | 9 (18.4%)              |         |
| EÇLS               |                        |                        |         |
| Duration before    |                        | 11,6 ± 11.9 [1-26]     |         |
| Ventricular assist |                        |                        | ]       |
| device             |                        |                        |         |
| Peripheral ECLS    |                        | 33                     |         |
| Central ECLS       |                        | 16                     |         |

European Journal of Cardio-Thoracic Surgery 48 (2015) 785–791

## Summary

- $\bullet$ perioperative mortality
- increase its use as a bridge to HTX.
- and long-term support options is warranted.

ECMO as bridge to heart transplant is a viable strategy in selected patients although associated with increased

Recent changes in donor Heart Allocation policies may

The implications and extent to this policy that left other high acuity patients relegated to status 2-3 are unclear.

The need of expertise in the use of different options of short

#### STS/EACTS Latin America Cardiovascular Surgery Conference November 15-17, 2018 Hilton Cartagena | Cartagena, Colombia The Society of Thoracic Surgeons EACTS

# THANK YOU

#### **Christian Bermudez MD** Christian.bermudez@uphs.upenn.edu





