



### **Guillaume LEBRETON, MD, PhD**

Associate Professor of Cardiac surgery
Director of CPB & ECMO programs
Pitié Salpêtrière Hospital, Sorbonne University, Paris





# COVID & ECMO... It will not work!

## About pathophysiology & cytokines ...

#### COVID-19, ECMO, and lymphopenia: a word of caution

Extracorporeal membrane oxygenation (ECMO) can serve as lifesaving rescue therapy for refractory respiratory failure in the setting of During ECMO, IL-6 concentrations are acute respiratory distress syndrome. such as that induced by coronavirus disease 2019 (COVID-19). In the study by Yang and colleagues,1 who compared clinical characteristics and outcomes in patients with severe COVID-19, five (83%) of six patients receiving ECMO died. Although this sample was small, and specific baseline characteristics and disease courses were almost unknown, it raises concerns about potential harms of ECMO therapy for COVID-19.

Lymphocyte count has been associated with increased disease severity in COVID-19.12 Patients who died from COVID-19 are reported to have had significantly lower lymphocyte counts than survivors.2 As such, we need to consider the potential compounding immunological insults involved with initiation of an extracorporeal circuit in these patients. During ECMO, substantial decreases in the number and function of some populations of lymphocytes is commonplace.3 As it might be hypothesised that repletion of lymphocytes could be key to recovery from COVID-19, lymphocyte count

should be closely monitored in these patients receiving ECMO.

Ruan and colleagues<sup>2</sup> also showed that interleukin-6 (IL-6) concentrations differed significantly between survivors and non-survivors of COVID-19, with non-survivors having up to 1.7-times higher values. consistently elevated and inversely correlated with survival in children and adults.4 Those that survived ECMO were able to normalise their IL-6 concentrations, whereas those that died had persistently elevated values. Moreover, elevated IL-6 concentrations in lung induced by initiation of ECMO have been convincingly shown to be associated with parenchymal damage in animal models of venovenous FCMO.5

While not to discourage the use of ECMO, based on the abovementioned observations, the immunological status of patients should be considered when selecting candidates for ECMO. More reports are needed to understand the potential benefits or harms of extracorporeal life support in severe COVID-19 and future authors should be encouraged to provide more data for this subset of patients. Lastly, clinicians should consider tracking both lymphocyte count and IL-6 during ECMO to monitor patient status and prognosis.

I declare no competing interests.

#### Brandon Michael Henry brandon.henry@cchmc.org

Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA: and Pediatric COVID-19 Open Data Analysis Group, Cincinnati, OH, USA

- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir Med 2020; published online Feb 24. https://doi.org/10.1016/52213 2600(20)30079-5
- Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China Intensive Care Med 2020; published March 3. DOI:10.1007/s00134-020-05991-x.
- Bizzarro MJ, Conrad SA, Kaufman DA, Rycus P. Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr Crit Care Med 2011:
- Risnes I, Wagner K, Ueland T, Mollnes T, Aukrust P, Svennevig J. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion 2008:
- Shi J, Chen Q, Yu W, et al. Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model. Artif Organs 2014; 38: 215-23.





Published Online March 13, 2020 https://doi.org/10.1016/ 52213-2600(20)30119-3

### SARS Cov 2: inflammation +++

- IL6 provokes lung injury, ARDS
- Non survivors
  - increased IL6
  - low Lymphocytes

## ECMO provokes inflammation

- increase II 6 level
- Parenchymal damage (animal)
- ECMO will make patients worse

**COVID:** No place for ECMO?

www.thelancet.com/respiratory Vol 8 April 2020







# COVID & ECMO... It will not work!

## About Chineese experience...

#### Letter to the Editor

Poor survival with extracorporeal membrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): Pooled analysis of early reports



Brandon Michael Henry Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, OH, USA



| Authors            | Age (yrs): <sup>a</sup>                            | # of patients: $n = (# ARDS patients)$ | Conventional ARDS<br>Therapy: n= | Conventional ARDS Therapy<br>Survivors; n (%) | ECMO:<br>n= | ECMO-Survivors; n<br>(%) |
|--------------------|----------------------------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------|-------------|--------------------------|
| Ruan Q et al. 2020 | Survivors: 67 (15–81)<br>Non-Survivors: 50 (44–81) | 150 (62)                               | 55                               | 7 (12.7%)                                     | 7           | 0 (0%)                   |
| Wu et al. 2020     | 51 (43-60)                                         | 210 (84)                               | 83                               | 40 (48.2)                                     | 1           | 0 (%)                    |
| Yang X et al. 2020 | 59.7 (13.3)                                        | 52 (35)                                | 29                               | 9 (31.0%)                                     | 6           | 1 (16.6%)                |
| Zhou F et al. 2020 | 56.0 (46.0-67.0)                                   | 191 (59)                               | 56                               | 9 (16.1%)                                     | 3           | 0 (0%)                   |

a Data presented as mean (SD) or median (IQR), ARDS - Acute Respiratory Distress Syndrome.

Journal of Critical Care 58 (2020) 27-28







## Regional network & Centralization







### **Expert group**

#### **Hotline COVID ECMO**

- Indications
- Bed management
- Mobile unit

## **ECMO Pooling**

- Pumps, circuits,...

## Continuous follow-up

- Results assessment
- Adjustment of (contra-)indications
- Stock management...







### **Indications & network**



### Strict EOLIA criteria

Lancet Resp Med , 2019

#### **Contra-indications**

- Age > 65yrs
- Severe Comorbidities
- Advanced COPD, cardiac failure, Cirrhosis (Child B/C), home O2...
- Severe immunocompromised status
- Hematological cancer, advanced cancer...
- Cardiac arrest
- Except witnessed, with bystander CPR, low-flow <15 minutes
- MV duration > 10 days
- Multiple organ failure
- Except isolated AKI...
- BMI>35 kg/m2







## Regional network & Centralization







## **Expert group**

### **Hotline COVID ECMO**

- Indications
- Bed management
- Mobile unit

## **ECMO Pooling**

- Pumps, circuits,...

### Continuous follow-up

- Results assessment
- Adjustment of (contra-)indications
- Stock management...







# **Mobile Unit & ECMO implantation**





| VV ECMO | Drainage                 | Reinjection               |  |  |
|---------|--------------------------|---------------------------|--|--|
| Femoro- | Venous                   | Arterial canula           |  |  |
| jugular | Canula                   | 19- <b>21-23 Fr</b> 15 cm |  |  |
| Femoro- | <b>25-29 Fr</b><br>55 cm | Venous Canula             |  |  |
| femoral |                          | Distal reinjection        |  |  |
| iemorai |                          | 19Fr 60 cm                |  |  |







**ECMO Implantations** 

*Apr 21:* **279** 

Paris Area – 21% COVID: ICU
ICU: 1200 beds increased to 2600
15 ECMO centers (CTS centers)

| Feb 25th – Apr 21st | 279 patients      |
|---------------------|-------------------|
| Female              | 20.3%             |
| Age                 | 51 ± 9.2          |
| BMI                 | 29.9 ± 4.8        |
| Mec. Vent.          | 5.5 [3-7] days    |
| рН                  | 7.3 [7.26 - 7.36] |
| PaO2                | 61 [55-70]        |
| PaCO2               | 60 [50.7-69.7]    |
| P/F                 | 60 [55.2-69]      |
| PEEP                | 12 [10-14]        |
| Plat P              | 30 [30-32]        |
| Vt                  | 400 [360-430]     |
| RR                  | 30 [28-32]        |



Courtesy A Combes







## Stock management

## **ECMO** shortage

## **Continuous follow-up**

## **ECMO Pooling**

- Pump
- Circuits
- Cannula

### Few new pumps

- Companies
- France (little affected regions)...
- Germany/Austria









## Regional network & Centralization







### **Expert group**

#### **Hotline COVID ECMO**

- Indications
- Bed management
- Mobile unit

## **ECMO Pooling**

- Pumps, circuits,...

## **Continuous follow-up**

- Results assessment
- Adjustment of (contra-)indications
- Stock management...







## **Preliminary Results**









## **Anticoagulation**

## **COVID: Thromboembolism & coagulopathy**

### Pulmonary embolism +++

In one ICU (A. Combes), about 51 patients:

- 3 PE with cardiogenic shock
- 4 PE under ECMO support !!!
- 1 died before ECMO: autopsy = PE





### Sars Cov 2:



↗ D-dimeres↗ FDPs, PT↘ Platelets

#### **VV ECMO COVID**



Ratio TCA = 2-2,5 antiXa = 0.3 UI/mL IV Unfractionned Heparin +++







## Take home messages

### **NOT ALL PATIENTS DIE ON ECMO!!!**

Most patients stabilized while on ECMO

#### **SARS Cov 2 & ARDS**

- VERY severe lung disease
- Good Anticoagulation is mandatory +++
- Expert centers +++

#### **TOO EARLY TO DRAW ANY CONCLUSIONS**

We need time to evaluate our results

- Some patients weaned <10 days of ECMO
- Few patients extubated & ICU discharged
- Others may require weeks of support













### **Guillaume LEBRETON**

Department of Thoracic & Cardiovascular Surgery Pitié-Salpêtrière Hospital, Sorbonne University, Paris guillaume.lebreton@aphp.fr